LSOS: Line-search Second-Order Stochastic optimization methods for nonconvex finite sums

We develop a line-search second-order algorithmic framework for minimizing finite sums. We do not make any convexity assumptions, but require the terms of the sum to be continuously differentiable and have Lipschitz-continuous gradients. The methods fitting into this framework combine line searches and suitably decaying step lengths. A key issue is a two-step sampling at … Read more

Distributionally Robust Optimization with Markovian Data

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from … Read more

Markov Chain Sampling of Hidden Relay States for Economic Dispatch with Cascading Failures

Independent system operators (ISO) of electric power networks aim to dispatch electricity economically while maintaining system reliability. NERC (North America Electric Reliability Council) requires the transmission network to be (N-1)-secure, i.e., to have sufficient supply to satisfy demand in the event of the failure of any single resource in the network. Such a policy is … Read more

Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator … Read more

On the Value of Multistage Risk-Averse Stochastic Facility Location With or Without Prioritization

We consider a multiperiod stochastic capacitated facility location problem under uncertain demand and budget in each period. Using a scenario tree representation of the uncertainties, we formulate a multistage stochastic integer program to dynamically locate facilities in each period and compare it with a two-stage approach that determines the facility locations up front. In the … Read more

Central Limit Theorem and Sample Complexity of Stationary Stochastic Programs

In this paper we discuss sample complexity of solving stationary stochastic programs by the Sample Average Approximation (SAA) method. We investigate this in the framework of Optimal Control (in discrete time) setting. In particular we derive a Central Limit Theorem type asymptotics for the optimal values of the SAA problems. The main conclusion is that … Read more

Batch Learning in Stochastic Dual Dynamic Programming

We consider the stochastic dual dynamic programming (SDDP) algorithm, which is a widely employed algorithm applied to multistage stochastic programming, and propose a variant using batch learning, a technique used with success in the reinforcement learning framework. We cast SDDP as a type of Q-learning algorithm and describe its application in both risk neutral and … Read more

Stochastic Variance-Reduced Prox-Linear Algorithms for Nonconvex Composite Optimization

We consider the problem of minimizing composite functions of the form $f(g(x))+h(x)$, where~$f$ and~$h$ are convex functions (which can be nonsmooth) and $g$ is a smooth vector mapping. In addition, we assume that $g$ is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose … Read more

Distributionally Robust Optimal Control and MDP Modeling

In this paper, we discuss Optimal Control and Markov Decision Process (MDP) formulations of multistage optimization problems when the involved probability distributions are not known exactly, but rather are assumed to belong to specified ambiguity families. The aim of this paper is to clarify a connection between such distributionally robust approaches to multistage stochastic optimization. … Read more

On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this … Read more