An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a filter line-search algorithm that does not require inertia information about the linear system to ensure global convergence. The proposed approach performs curvature tests along the search step to ensure descent. This feature permits more modularity in the linear algebra, enabling the use of a wider range of iterative and decomposition strategies. We … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these constraints. In this paper, we study infinite horizon DPs with discounted costs and consider … Read more

Dynamic Generation of Scenario Trees

We present new algorithms for the dynamic generation of scenario trees for multistage stochastic optimization. The different methods described are based on random vectors, which are drawn from conditional distributions given the past and on sample trajectories. The structure of the tree is not determined beforehand, but dynamically adapted to meet a distance criterion, which … Read more

An SDP approach for multiperiod mixed 0–1 linear programming models with stochastic dominance constraints for risk management

In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage case and includes both first-order and second-order constraints. We propose a stochastic … Read more

Multilevel Optimization Modeling for Risk-Averse Stochastic Programming

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which uncertainty is resolved at more than one stage, however, using coherent risk measures within a standard single-level optimization framework becomes problematic. To avoid severe time-consistency difficulties, the current state of the art is to … Read more

Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. … Read more

A Generalization of Benders’ Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

We describe a generalization of Benders’ method for solving two-stage stochastic linear optimization problems in which there are both continuous and integer variables in the first and second stages. Benders’ method relies on finding effective lower approximations for the value function of the second-stage problem. In this setting, the value function is a discontinuous, non-convex, … Read more

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction

This paper addresses the value function of a general mixed integer linear optimization problem (MILP). The value function describes the change in optimal objective value as the right-hand side is varied and understanding its structure is central to solving a variety of important classes of optimization problems. We propose a discrete representation of the MILP … Read more

Cut Generation for Optimization Problems with Multivariate Risk Constraints

We consider a class of multicriteria stochastic optimization problems that features benchmarking constraints based on conditional value-at-risk and second-order stochastic dominance. We develop alternative mixed-integer programming formulations and solution methods for cut generation problems arising in optimization under such multivariate risk constraints. We give the complete linear description of two non-convex substructures appearing in these … Read more