Regret Analysis of Block Coordinate Gradient Methods for Online Convex Programming

In this paper, we propose two block coordinate gradient (BCG) methods for the online convex programming: the BCG method with the cyclic rule and the BCG method with the random rule. The proposed methods solve a low dimensional problem at each iteration, and hence they are efficient for large scale problems. For the proposed methods, … Read more

A Semi-Infinite Programming Approach for Distributionally Robust Reward-Risk Ratio Optimization with Matrix Moments Constraints

Reward-risk ratio optimization is an important mathematical approach in finance. In this paper, we revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken against the risk arising from ambiguity of the true distribution. We propose … Read more

The impact of wind uncertainty on the strategic valuation of distributed electricity storage

The intermittent nature of wind energy generation has introduced a new degree of uncertainty to the tactical planning of energy systems. Short-term energy balancing decisions are no longer (fully) known, and it is this lack of knowledge that causes the need for strategic thinking. But despite this observation, strategic models are rarely set in an … Read more

Safe Approximations of Chance Constraints Using Historical Data

This paper proposes a new way to construct uncertainty sets for robust optimization. Our approach uses the available historical data for the uncertain parameters and is based on goodness-of-fit statistics. It guarantees that the probability that the uncertain constraint holds is at least the prescribed value. Compared to existing safe approximation methods for chance constraints, … Read more

A Composite Risk Measure Framework for Decision Making under Uncertainty

In this paper, we present a unified framework for decision making under uncertainty. Our framework is based on the composite of two risk measures, where the inner risk measure accounts for the risk of decision given the exact distribution of uncertain model parameters, and the outer risk measure quantifies the risk that occurs when estimating … Read more

Obtaining Lower Bounds from the Progressive Hedging Algorithm for Stochastic Mixed-Integer Programs

We present a method for computing lower bounds in the Progressive Hedging Algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using … Read more

Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility

The objective of dynamic economic dispatch (DED) problem is to find the optimal dispatch of generation units in a given operation horizon to supply a pre-specified demand, while satisfying a set of constraints. In this paper, an efficient method based on Optimality Condition Decomposition (OCD) technique is proposed to solve the DED problem in real-time … Read more

Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning

Electric Power Generation Expansion Planning (GEP) is the problem of determining an optimal construction and generation plan of both new and existing electric power plants to meet future electricity demand. We consider a stochastic optimization approach for this capacity expansion problem under demand and fuel price uncertainty. In a two-stage stochastic optimization model for GEP, … Read more

A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”

Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in general correctly model such … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more