Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount … Read more

Stochastic linear programming games with concave preferences

We study stochastic linear programming games: a class of stochastic cooperative games whose payoffs under any realization of uncertainty are determined by a specially structured linear program. These games can model a variety of settings, including inventory centralization and cooperative network fortification. We focus on the core of these games under an allocation scheme that … Read more

A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

An approximation scheme for a class of risk-averse stochastic equilibrium problems

We consider two models for stochastic equilibrium: one based on the variational equilibrium of a generalized Nash game, and the other on the mixed complementarity formulation. Each agent in the market solves a one-stage risk-averse optimization problem with both here-and-now (investment) variables and (production) wait-and-see variables. A shared constraint couples almost surely the wait-and-see decisions … Read more

Sample Average Approximation Method for Compound Stochastic Optimization Problems

The paper studies stochastic optimization (programming) problems with compound functions containing expectations and extreme values of other random functions as arguments. Compound functions arise in various applications. A typical example is a variance function of nonlinear outcomes. Other examples include stochastic minimax problems, econometric models with latent variables, and multilevel and multicriteria stochastic optimization problems. … Read more

Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs

We study a class of two-stage stochastic integer programs with general integer variables in both stages and finitely many realizations of the uncertain parameters. Based on Benders’ method, we propose a decomposition algorithm that utilizes Gomory cuts in both stages. The Gomory cuts for the second-stage scenario subproblems are parameterized by the first-stage decision variables, … Read more

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable semi-infinite … Read more

Monte Carlo Sampling-Based Methods for Stochastic Optimization

This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization … Read more

Kusuoka Representations of Coherent Risk Measures in General Probability Spaces

Kusuoka representations provide an important and useful characterization of law invariant coherent risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact that such representations do not always exist in probability spaces with atoms, such as finite probability spaces. We introduce the class of functionally coherent risk measures, … Read more

Optimal Primal-Dual Methods for a Class of Saddle Point Problems

We present a novel accelerated primal-dual (APD) method for solving a class of deterministic and stochastic saddle point problems (SPP). The basic idea of this algorithm is to incorporate a multi-step acceleration scheme into the primal-dual method without smoothing the objective function. For deterministic SPP, the APD method achieves the same optimal rate of convergence … Read more