Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility

The objective of dynamic economic dispatch (DED) problem is to find the optimal dispatch of generation units in a given operation horizon to supply a pre-specified demand, while satisfying a set of constraints. In this paper, an efficient method based on Optimality Condition Decomposition (OCD) technique is proposed to solve the DED problem in real-time … Read more

Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning

Electric Power Generation Expansion Planning (GEP) is the problem of determining an optimal construction and generation plan of both new and existing electric power plants to meet future electricity demand. We consider a stochastic optimization approach for this capacity expansion problem under demand and fuel price uncertainty. In a two-stage stochastic optimization model for GEP, … Read more

A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”

Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in general correctly model such … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more

Clustering-Based Preconditioning for Stochastic Programs

We present a clustering-based preconditioning strategy for KKT systems arising in stochastic programming within an interior-point framework. The key idea is to perform adaptive clustering of scenarios (inside-the-solver) based on their influence on the problem as opposed to cluster scenarios based on problem data alone, as is done in existing (outside-thesolver) approaches. We derive spectral … Read more

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

We study an adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic program, and we study a finitely converging algorithm in which the partition is adaptively adjusted until it yields an optimal solution. A solution guided refinement strategy is developed to refine the … Read more

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that only stochastic information of the gradients of the objective function is available via a stochastic first-order oracle (SFO). Firstly, we propose a general framework of stochastic quasi-Newton methods for solving nonconvex stochastic optimization. The proposed framework extends the classic … Read more

Sample approximations of multiobjective stochastic optimization problems

The article describes approximation technique for solving multiobjective stochastic optimization problems. As a generalized model of a stochastic system to be optimized a vector “input — random output” system is used. Random outputs are converted into a vector of deterministic performance/risk indicators. The problem is to find those inputs that correspond to Pareto-optimal values of … Read more

A note on sample complexity of multistage stochastic programs

We derive a \emph{lower bound} for the \emph{sample complexity} of the Sample Average Approximation method for a certain class of multistage stochastic optimization problems. In previous works, \emph{upper bounds} for such problems were derived. We show that the dependence of the \emph{lower bound} with respect to the complexity parameters and the problem’s data are comparable … Read more

Process-Based Risk Measures for Observable and Partially Observable Discrete-Time Controlled Systems

For controlled discrete-time stochastic processes we introduce a new class of dynamic risk measures, which we call process-based. Their main features are that they measure risk of processes that are functions of the history of the base process. We introduce a new concept of conditional stochastic time consistency and we derive the structure of process-based … Read more