Convergence of trust-region methods based on probabilistic models

In this paper we consider the use of probabilistic or random models within a classical trust-region framework for optimization of deterministic smooth general nonlinear functions. Our method and setting differs from many stochastic optimization approaches in two principal ways. Firstly, we assume that the value of the function itself can be computed without noise, in … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

Tail bounds for stochastic approximation

Stochastic-approximation gradient methods are attractive for large-scale convex optimization because they offer inexpensive iterations. They are especially popular in data-fitting and machine-learning applications where the data arrives in a continuous stream, or it is necessary to minimize large sums of functions. It is known that by appropriately decreasing the variance of the error at each … Read more

Interdiction Games on Markovian PERT Networks

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, while an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either pre-committed or adapts … Read more

Time (in)consistency of multistage distributionally robust inventory models with moment constraints

Recently, there has been a growing interest in developing inventory control policies which are robust to model misspecification. One approach is to posit that nature selects a worst-case distribution for any relevant stochastic primitives from some pre-specified family. Several communities have observed that a subtle phenomena known as time inconsistency can arise in this framework. … Read more

On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem

We suggest a method for equivalent transformation of a quantile optimization problem with discrete distribution of random parameters to mixed integer programming problems. The number of additional integer (in fact boolean) variables in the equivalent problems equals to the number of possible scenarios for random data. The obtained mixed integer problems are solved by standard … Read more

Risk-Averse Stochastic Dual Dynamic Programming

We formulate a risk-averse multi-stage stochastic program using conditional value at risk as the risk measure. The underlying random process is assumed to be stage-wise independent, and a stochastic dual dynamic programming (SDDP) algorithm is applied. We discuss the poor performance of the standard upper bound estimator in the risk-averse setting and propose a new … Read more

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker’s prior information. In this paper, we propose … Read more

Generating moment matching scenarios using optimization techniques

An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the … Read more

Risk-Averse Control of Undiscounted Transient Markov Models

We use Markov risk measures to formulate a risk-averse version of the undiscounted total cost problem for a transient controlled Markov process. We derive risk-averse dynamic programming equations and we show that a randomized policy may be strictly better than deterministic policies, when risk measures are employed. We illustrate the results on an optimal stopping … Read more