Probabilistic Iterative Hard Thresholding for Sparse Learning

For statistical modeling wherein the data regime is unfavorable in terms of dimensionality relative to the sample size, finding hidden sparsity in the ground truth can be critical in formulating an accurate statistical model. The so-called “l0 norm”, which counts the number of non-zero components in a vector, is a strong reliable mechanism of enforcing … Read more

A Two Stepsize SQP Method for Nonlinear Equality Constrained Stochastic Optimization

We develop a Sequential Quadratic Optimization (SQP) algorithm for minimizing a stochastic objective function subject to deterministic equality constraints. The method utilizes two different stepsizes, one which exclusively scales the component of the step corrupted by the variance of the stochastic gradient estimates and a second which scales the entire step. We prove that this … Read more

A Markovian Model for Learning-to-Optimize

We present a probabilistic model for stochastic iterative algorithms with the use case of optimization algorithms in mind. Based on this model, we present PAC-Bayesian generalization bounds for functions that are defined on the trajectory of the learned algorithm, for example, the expected (non-asymptotic) convergence rate and the expected time to reach the stopping criterion. … Read more

Probing-Enhanced Stochastic Programming

We consider a two-stage stochastic decision problem where the decision-maker has the opportunity to obtain information about the distribution of the random variables $\xi$ that appear in the problem through a set of discrete actions that we refer to as probing. Probing components of a random vector $\eta$ that is jointly-distributed with $\xi$ allows the … Read more

The Blessing of Strategic Customers in Personalized Pricing

We consider a feature-based personalized pricing problem in which the buyer is strategic: given the seller’s pricing policy, the buyer can augment the features that they reveal to the seller to obtain a low price for the product. We model the seller’s pricing problem as a stochastic program over an infinite-dimensional space of pricing policies … Read more

Properties of Two-Stage Stochastic Multi-Objective Linear Programs

We consider a two-stage stochastic multi-objective linear program (TSSMOLP) which is a natural generalization of the well-studied two-stage stochastic linear program (TSSLP) allowing modelers to specify multiple objectives in each stage. The second-stage recourse decision is governed by an uncertain multi-objective linear program (MOLP) whose solution maps to an uncertain second-stage nondominated set. The TSSMOLP … Read more

A new framework to generate Lagrangian cuts in multistage stochastic mixed-integer programming

Based on recent advances in Benders decomposition and two-stage stochastic integer programming we present a new generalized framework to generate Lagrangian cuts in multistage stochastic mixed-integer linear programming (MS-MILP). This framework can be incorporated into decomposition methods for MS-MILPs, such as the stochastic dual dynamic integer programming (SDDiP) algorithm. We show how different normalization techniques … Read more

On Lipschitz regularization and Lagrangian cuts in multistage stochastic mixed-integer linear programming

We provide new theoretical insight on the generation of linear and non-convex cuts for value functions of multistage stochastic mixed-integer programs based on Lagrangian duality. First, we analyze in detail the impact that the introduction of copy constraints, and especially, the choice of the accompanying constraint set for the copy variable have on the properties … Read more

On the Trade-Off Between Distributional Belief and Ambiguity: Conservatism, Finite-Sample Guarantees, and Asymptotic Properties

We propose and analyze a new data-driven trade-off (TRO) approach for modeling uncertainty that serves as a middle ground between the optimistic approach, which adopts a distributional belief, and the pessimistic distributionally robust optimization approach, which hedges against distributional ambiguity. We equip the TRO model with a TRO ambiguity set characterized by a size parameter … Read more