Stability of Markovian Stochastic Programming

Multi-stage stochastic programming is notoriously hard, since solution methods suffer from the curse of dimensionality. Recently, stochastic dual dynamic programming has shown promising results for Markovian problems with many stages and a moderately large state space. In order to numerically solve these problems simple discrete representations of Markov processes are required but a convincing theoretical … Read more

A Multicut Approach to Compute Upper Bounds for Risk-Averse SDDP

Stochastic Dual Dynamic Programming (SDDP) is a widely used and fundamental algorithm for solving multistage stochastic optimization problems. Although SDDP has been frequently applied to solve risk-averse models with the Conditional Value-at-Risk (CVaR), it is known that the estimation of upper bounds is a methodological challenge, and many methods are computationally intensive. In practice, this … Read more

Duality of upper bounds in stochastic dynamic programming

For multistage stochastic programming problems with stagewise independent uncertainty, dynamic programming algorithms calculate polyhedral approximations for the value functions at each stage.  The SDDP algorithm provides piecewise linear lower bounds, in the spirit of the L-shaped algorithm, and corresponding upper bounds took a longer time to appear.  One strategy uses the primal dynamic programming recursion … Read more

Distributionally Risk-Receptive and Robust Multistage Stochastic Integer Programs and Interdiction Models

In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations … Read more

Mixed-Integer Programming for a Class of Robust Submodular Maximization Problems

We consider robust submodular maximization problems (RSMs), where given a set of \(m\) monotone submodular objective functions, the robustness is with respect to the worst-case (scaled) objective function. The model we consider generalizes two variants of robust submodular maximization problems in the literature, depending on the choice of the scaling vector. On one hand, by using … Read more

End-to-End Learning for Stochastic Optimization: A Bayesian Perspective

We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this analysis, we then propose new end-to-end learning algorithms for training decision maps that output solutions of empirical risk … Read more

Adaptive Importance Sampling Based Surrogation Methods for Bayesian Hierarchical Models, via Logarithmic Integral Optimization

We explore Maximum a Posteriori inference of Bayesian Hierarchical Models (BHMs) with intractable normalizers, which are increasingly prevalent in contemporary applications and pose computational challenges when combined with nonconvexity and nondifferentiability. To address these, we propose the Adaptive Importance Sampling-based Surrogation method, which efficiently handles nonconvexity and nondifferentiability while improving the sampling approximation of the … Read more

Sampling-based Decomposition Algorithms for Multistage Stochastic Programming

Sampling-based algorithms provide a practical approach to solving large-scale multistage stochastic programs. This chapter presents two alternative approaches to incorporating sampling within multistage stochastic linear programming algorithms. In the first approach, sampling is used to construct a sample average approximation (SAA) of the true multistage program. Subsequently, an optimization step is undertaken using deterministic decomposition … Read more

On the Regulatory and Economic Incentives for Renewable Hybrid Power Plants in Brazil

The complementarity between renewable generation profiles has been widely explored in the literature. Notwithstanding, the regulatory and economic frameworks for hybrid power plants add interesting challenges and opportunities for investors, regulators, and planners. Focusing on the Brazilian power market, this paper proposes a unified and isonomic firm energy certificate (FEC) calculation for non-controllable renewable generators, … Read more

Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning Problems

Many machine learning applications and tasks rely on the stochastic gradient descent (SGD) algorithm and its variants. Effective step length selection is crucial for the success of these algorithms, which has motivated the development of algorithms such as ADAM or AdaGrad. In this paper, we propose a novel algorithm for adaptive step length selection in … Read more