Stochastic Sequencing of Surgeries for a Single Surgeon Operating in Parallel Operating Rooms

We develop algorithms for a stochastic two-machine single-server sequencing problem with waiting time, idle time and overtime costs. Scheduling surgeries for a single surgeon operating in two parallel operating rooms (ORs) motivates the work. The basic idea is that staff perform cleanup and setup in one OR while the surgeon is operating in the other. … Read more

Sampling-based decomposition methods for multistage stochastic programs based on extended polyhedral risk measures

We define a risk averse nonanticipative feasible policy for multistage stochastic programs and propose a methodology to implement it. The approach is based on dynamic programming equations written for a risk averse formulation of the problem. This formulation relies on a new class of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of … Read more

Robust and Stochastically Weighted Multi-Objective Optimization Models and Reformulations

In this paper we introduce robust and stochastically weighted sum approaches to deterministic and stochastic multi-objective optimization. The robust weighted sum approach minimizes the worst case weighted sum of objectives over a given weight region. We study the reformulations of the robust weighted sum problem under different definitions of deterministic weight regions. We next introduce … Read more

The value of rolling horizon policies for risk-averse hydro-thermal planning

We consider the optimal management of a hydro-thermal power system in the mid and long terms. From the optimization point of view, this amounts to a large-scale multistage stochastic linear program, often solved by combining sampling with decomposition algorithms, like stochastic dual dynamic programming. Such methodologies, however, may entail prohibitive computational time, especially when applied … Read more

On the Complexity of Non-Overlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems

Given a combinatorial optimization problem with an arbitrary partition of the set of random objective coefficients, we evaluate the tightest possible bound on the expected optimal value for joint distributions consistent with the given multivariate marginals of the subsets in the partition. For univariate marginals, this bound was first proposed by Meilijson and Nadas (Journal … Read more

Convex duality in stochastic programming and mathematical finance

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a … Read more

Inexact Bundle Methods for Two-Stage Stochastic Programming

Stochastic programming problems arise in many practical situations. In general, the deterministic equivalents of these problems can be very large and may not be solvable directly by general-purpose optimization approaches. For the particular case of two-stage stochastic programs, we consider decomposition approaches akin to a regularized L-shaped method that can handle inexactness in the subproblem … Read more

PySP: Modeling and Solving Stochastic Programs in Python

Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its wide-spread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic … Read more

Information-theoretic lower bounds on the oracle complexity of convex optimization

Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic … Read more

Scenario decomposition of risk-averse multistage stochastic programming problems

For a risk-averse multistage stochastic optimization problem with a finite scenario tree, we introduce a new scenario decomposition method and we prove its convergence. The method is applied to a risk-averse inventory and assembly problem. In addition, we develop a partially regularized bundle method for nonsmooth optimization. Citation RUTCOR, Rutgers University, Piscataway, NJ 08854 Article … Read more