Exploiting problem structure in derivative free optimization

A structured version of derivative-free random pattern search optimization algorithms is introduced which is able to exploit coordinate partially separable structure (typically associated with sparsity) often present in unconstrained and bound-constrained optimization problems. This technique improves performance by orders of magnitude and makes it possible to solve large problems that otherwise are totally intractable by … Read more

Centering ADMM for the Semidefinite Relaxation of the QAP

We propose a new method for solving the semidefinite (SD) relaxation of the quadratic assignment problem (QAP), called the Centering ADMM. The Centering ADMM is an alternating direction method of multipliers (ADMM) combining the centering steps used in the interior-point method. The first stage of the Centering ADMM updates the iterate so that it approaches … Read more

On the convexification of constrained quadratic optimization problems with indicator variables

Motivated by modern regression applications, in this paper, we study the convexification of quadratic optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that for a separable quadratic … Read more

Substitution-based Equipment Balancing in Service Networks with Multiple Equipment Types

We investigate substitution-based equipment balancing for a package express carrier operating multiple equipment types in its service network. The weekly schedule of movements used to transport packages through the service network leads to changes in equipment inventory at the facilities in the network. We seek to reduce this change, i.e., the equipment imbalance associated with … Read more

A parallel splitting ALM-based algorithm for separable convex programming

The augmented Lagrangian method (ALM) provides a benchmark for tackling the canonical convex minimization problem with linear constraints. We consider a special case where the objective function is the sum of $m$ individual subfunctions without coupled variables. The recent study reveals that the direct extension of ALM for separable convex programming problems is not necessarily … Read more

Proximal splitting algorithms: Relax them all!

Convex optimization problems, whose solutions live in very high dimensional spaces, have become ubiquitous. To solve them, proximal splitting algorithms are particularly adequate: they consist of simple operations, by handling the terms in the objective function separately. We present several existing proximal splitting algorithms and we derive new ones, within a unified framework, which consists … Read more

On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty

This study focuses on the development of a mixed binary primal-dual bilinear model for multi-period bilevel network expansion planning under uncertainty, where pricing-based equilibrated strategic and operational decisions are to be made. The periodwise dependent parameters’ uncertainty is represented by a _nite set of scenarios. Pricing-based equilibrium is required in the models to be optimized … Read more

Robust location-transportation problems with integer-valued demand

A location-transportation problem concerns designing a company’s distribution network consisting of one central warehouse with ample stock and multiple local warehouses for a long but finite time horizon. The network is designed to satisfy the demands of geographically dispersed customers for multiple products within given delivery time targets. The company needs to first decide on … Read more

A Regularized Smoothing Method for Fully Parameterized Convex Problems with Applications to Convex and Nonconvex Two-Stage Stochastic Programming

We present an approach to regularize and approximate solution mappings of parametric convex optimization problems that combines interior penalty (log-barrier) solutions with Tikhonov regularization. Because the regularized mappings are single-valued and smooth under reasonable conditions, they can be used to build a computationally practical smoothing for the associated optimal value function. The value function in … Read more

Dynamic programming for the time-dependent traveling salesman problem with time windows

The recent growth of direct-to-consumer deliveries has stressed the importance of last-mile logistics, becoming one of the critical factors in city planning. One of the key factors lies in the last-mile deliveries, reaching in some cases nearly 50% of the overall parcel delivery cost. Different variants of the the well-known Traveling Salesman Problem (TSP) arise … Read more