ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection

In this paper, we analyze the convergence of Alternating Direction Method of Multipliers (ADMM) on convex quadratic programs (QPs) with linear equality and bound constraints. The ADMM formulation alternates between an equality constrained QP and a projection on the bounds. Under the assumptions of: (i) positive definiteness of the Hessian of the objective projected on … Read more

The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex

The alternating direction method of multipliers (ADMM) is a benchmark for solving a two-block linearly constrained convex minimization model whose objective function is the sum of two functions without coupled variables. Meanwhile, it is known that the convergence is not guaranteed if the ADMM is directly extended to a multiple-block convex minimization model whose objective … Read more

On the Information-Adaptive Variants of the ADMM: an Iteration Complexity Perspective

Designing algorithms for an optimization model often amounts to maintaining a balance between the degree of information to request from the model on the one hand, and the computational speed to expect on the other hand. Naturally, the more information is available, the faster one can expect the algorithm to converge. The popular algorithm of … Read more

HIPAD – A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method … Read more

Randomized First-order Methods for Saddle Point Optimization

In this paper, we present novel randomized algorithms for solving saddle point problems whose dual feasible region is a direct product of many convex sets. Our algorithms can achieve ${\cal O}(1/N)$ rate of convergence by solving only one dual subproblem at each iteration. Our algorithms can also achieve ${\cal O}(1/N^2)$ rate of convergence if a … Read more

Block-wise Alternating Direction Method of Multipliers with Gaussian Back Substitution for Multiple-block Convex Programming

We consider the linearly constrained convex minimization model with a separable objective function which is the sum of m functions without coupled variables, and discuss how to design an efficient algorithm based on the fundamental technique of splitting the augmented Lagrangian method (ALM). Our focus is the specific big-data scenario where m is huge. A … Read more

On the Sublinear Convergence Rate of Multi-Block ADMM

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions whose variables are linked by linear constraints, has remained unclear for a very long time. Recently, Chen … Read more

On the Global Linear Convergence of the ADMM with Multi-Block Variables

The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of $N$ convex functions with $N$-block variables linked by some linear constraints. While the convergence of the ADMM for $N=2$ was well established in the literature, … Read more

Block-wise Alternating Direction Method of Multipliers for Multiple-block Convex Programming and Beyond

The alternating direction method of multipliers (ADMM) is a benchmark for solving a linearly constrained convex minimization model with a two-block separable objective function; and it has been shown that its direct extension to a multiple-block case where the objective function is the sum of more than two functions is not necessarily convergent. For the … Read more

Self Equivalence of the Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADM or ADMM) breaks a complex optimization problem into much simpler subproblems. The ADM algorithms are typically short and easy to implement yet exhibit (nearly) state-of-the-art performance for large-scale optimization problems. To apply ADM, we first formulate a given problem into the “ADM-ready” form, so the final algorithm depends … Read more