Randomized Primal-Dual Proximal Block Coordinate Updates

In this paper we propose a randomized primal-dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints. Assuming mere convexity, we establish its $O(1/t)$ convergence rate in terms of the objective value and feasibility measure. The framework includes several existing algorithms as special cases such … Read more

Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis

Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its … Read more

Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework

This paper describes a regularized variant of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise iteration-complexity of the new method is better than the corresponding one for the standard ADMM method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity … Read more

On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method

The paper answers several open questions of the alternating direction method of multipliers (ADMM) and the block coordinate descent (BCD) method that are now wildly used to solve large scale convex optimization problems in many fields. For ADMM, it is still lack of theoretical understanding of the algorithm when the objective function is not separable … Read more

ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates

We propose ARock, an asynchronous parallel algorithmic framework for finding a fixed point to a nonexpansive operator. In the framework, a set of agents (machines, processors, or cores) update a sequence of randomly selected coordinates of the unknown variable in an asynchronous parallel fashion. As special cases of ARock, novel algorithms for linear systems, convex … Read more

Alternating Direction Method of Multipliers for Linear Programming

Recently the alternating direction method of multipliers (ADMM) has been widely used for various applications arising in scientific computing areas. Most of these application models are, or can be easily reformulated as, linearly constrained convex minimization models with separable nonlinear objective functions. In this note we show that ADMM can also be easily used for … Read more

On the Step Size of Symmetric Alternating Directions Method of Multipliers

The alternating direction method of multipliers (ADMM) is an application of the Douglas-Rachford splitting method; and the symmetric version of ADMM which updates the Lagrange multiplier twice at each iteration is an application of the Peaceman-Rachford splitting method. Sometimes the symmetric ADMM works empirically; but theoretically its convergence is not guaranteed. It was recently found … Read more

Iteration Complexity Analysis of Multi-Block ADMM for a Family of Convex Minimization without Strong Convexity

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems due to its superior practical performance. On the theoretical side however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions with $N$ block variables linked by linear … Read more

ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection

In this paper, we analyze the convergence of Alternating Direction Method of Multipliers (ADMM) on convex quadratic programs (QPs) with linear equality and bound constraints. The ADMM formulation alternates between an equality constrained QP and a projection on the bounds. Under the assumptions of: (i) positive definiteness of the Hessian of the objective projected on … Read more

The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex

The alternating direction method of multipliers (ADMM) is a benchmark for solving a two-block linearly constrained convex minimization model whose objective function is the sum of two functions without coupled variables. Meanwhile, it is known that the convergence is not guaranteed if the ADMM is directly extended to a multiple-block convex minimization model whose objective … Read more