Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more

Modular-topology optimization with Wang tilings: An application to truss structures

Modularity is appealing for solving many problems in optimization. It brings the benefits of manufacturability and reconfigurability to structural optimization, and enables a trade-off between the computational performance of a Periodic Unit Cell (PUC) and the efficacy of non-uniform designs in multi-scale material optimization. Here, we introduce a novel strategy for concurrent minimum-compliance design of … Read more

Optimal Residential Users Coordination Via Demand Response: An Exact Distributed Framework

This paper proposes a two-phase optimization framework for users that are involved in demand response (DR) programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipments but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary non-coordinated solution by implementing a … Read more

Optimal Residential Coordination Via Demand Response: A Distributed Framework

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a strategy … Read more

Outer Approximation for Global Optimization of Mixed-Integer Quadratic Bilevel Problems

Bilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP … Read more

Optimal time-and-level-of-use price setting for an energy retailer

This paper presents a novel price setting optimization problem for an energy retailer in the smart grid. In this framework the retailer buys energy from multiple generators via bilateral contracts, and sells it to a population of smart homes using Time-and-Level-of-Use prices (TLOU). TLOU is an energy price structure recently introduced in the literature, where … Read more

Dual-density-based reweighted $\ell_{1}hBcalgorithms for a class of $\ell_{0}hBcminimization problems

The optimization problem with sparsity arises in many areas of science and engineering such as compressed sensing, image processing, statistical learning and data sparse approximation. In this paper, we study the dual-density-based reweighted $\ell_{1}$-algorithms for a class of $\ell_{0}$-minimization models which can be used to model a wide range of practical problems. This class of … Read more

Near-optimal Robust Bilevel Optimization

Bilevel optimization studies problems where the optimal response to a second mathematical optimization problem is integrated in the constraints. Such structure arises in a variety of decision-making problems in areas such as market equilibria, policy design or product pricing. We introduce near-optimal robustness for bilevel problems, protecting the upper-level decision-maker from bounded rationality at the … Read more

Optimal Aggregated Peak Shaving Via Residential Demand Response: A Framework for Retailers

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their smart home components but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a peak … Read more

Optimal Design of Retailer-Prosumer Electricity Tariffs Using Bilevel Optimization

We compare various flexible tariffs that have been proposed to cost-effectively govern a prosumer’s electricity management – in particular time-of-use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP). As the outside option, we consider a fixed-price tariff (FP) that restricts the specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are at … Read more