Mathematical programming algorithms for spatial cloaking

We consider a combinatorial optimization problem for spatial information cloaking. The problem requires to compute one or several disjoint arborescences on a graph from a predetermined root or subset of candidate roots, so that the number of vertices in the arborescences is minimized but a given threshold on the overall weight associated with the vertices … Read more

Exactly solving packing problems with fragmentation

In packing problems with fragmentation a set of items of known weight is given, together with a set of bins of limited capacity; the task is to find an assignment of items to bins such that the sum of items assigned to the same bin does not exceed its capacity. As a distinctive feature, items … Read more

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of non- dominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team orienteering problem with … Read more

Solution Methods for the Multi-trip Elementary Shortest Path Problem with Resource Constraints

We investigate the multi-trip elementary shortest path problem (MESPPRC) with resource constraints in which the objective is to find a shortest path between a source node and a sink node such that nodes other than the specified replenishment node are visited at most once and resource constraints are not violated. After each visit to the … Read more

A Branch-and-Price Approach to the k-Clustering Minimum Biclique Completion Problem

Given a bipartite graph G = (S , T , E ), we consider the problem of finding k bipartite subgraphs, called clusters, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and … Read more

Sequencing and Scheduling in Coil Coating with Shuttles

We consider a complex planning problem in integrated steel production. A sequence of coils of sheet metal needs to be color coated in consecutive stages. Di erent coil geometries and changes of coatings may necessitate time-consuming setup work. In most coating stages one can choose between two parallel color tanks in order to reduce setup times. … Read more

Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs

We report on experiments with turning the branch-cut-and-price framework SCIP into a generic branch-cut-and-price solver. That is, given a mixed integer program (MIP), our code performs a Dantzig-Wolfe decomposition according to the user’s specification, and solves the resulting re-formulation via branch-and-price. We take care of the column generation subproblems which are solved as MIPs themselves, … Read more

A branch-and-price algorithm for multi-mode resource leveling

Resource leveling is a variant of resource-constrained project scheduling in which a non-regular objective function, the resource availability cost, is to be minimized. We present a branch-and-price approach together with a new heuristic to solve the more general turnaround scheduling problem. Besides precedence and resource constraints, also availability periods and multiple modes per job have … Read more

Exactly solving a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication networks a given set of client nodes must be served by different sets of facilities, providing different services and having different capabilities, which must be located and dimensioned in the design phase. Network topology must be designed as well, by assigning clients to facilities and facilities to higher level entities, when necessary. … Read more

OSPF Routing with Optimal Oblivious Performance Ratio Under Polyhedral Demand Uncertainty

We study the best OSPF style routing problem in telecommunication networks, where weight management is employed to get a routing configuration with the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of traffic matrices is a polyhedron defined by a set of linear constraints, and the performance of each routing is assessed on … Read more