Exactly solving a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication networks a given set of client nodes must be served by different sets of facilities, providing different services and having different capabilities, which must be located and dimensioned in the design phase. Network topology must be designed as well, by assigning clients to facilities and facilities to higher level entities, when necessary. … Read more

OSPF Routing with Optimal Oblivious Performance Ratio Under Polyhedral Demand Uncertainty

We study the best OSPF style routing problem in telecommunication networks, where weight management is employed to get a routing configuration with the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of traffic matrices is a polyhedron defined by a set of linear constraints, and the performance of each routing is assessed on … Read more

Modeling and Solving Location Routing and Scheduling Problems

This paper studies location routing and scheduling problems, a class of problems in which the decisions of facility location, vehicle routing, and route assignment are optimized simultaneously. For a version with capacity and time restrictions, two formulations are presented, one graph-based and one set-partitioning-based. For the set-partitioning-based formulation, valid inequalities are identified and their effectiveness … Read more

A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions

We investigate the problem of simultaneously determining the location of facilities and the design of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present a set-partitioning-based formulation of the problem and study the relationship between his formulation and the graph-based formulations that have been used in previous studies of this … Read more

Provisioning Virtual Private Networks under traffic uncertainty

We investigate a network design problem under traffic uncertainty which arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network so as to support all … Read more

Finding optimal realignments in sports leagues using a branch-and-cut-and-price approach

The sports team realignment problem can be modelled as $k$-way equipartition: given a complete graph $K_{n}=(V,E)$, with edge weight $c_{e}$ on each edge, partition the vertices $V$ into $k$ divisions that have exactly $S$ vertices, so as to minimize the total weight of the edges that have both endpoints in the same division. In this … Read more

Decomposition and Dynamic Cut Generation in Integer Linear Programming

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to generate bounds for mixed-integer linear programming problems. Traditionally, these methods have been viewed as distinct from polyhedral methods, in which bounds are obtained by dynamically generating valid inequalities to strengthen the linear programming relaxation. Recently, a number of … Read more

The Integration of an Interior-Point Cutting-Plane Method within a Branch-and-Price Algorithm

This paper presents a novel integration of interior point cutting plane methods within branch-and-price algorithms. Unlike the classical method, columns are generated at a “central” dual solution by applying the analytic centre cutting plane method (ACCPM) on the dual of the full master problem. First, we introduce improvements to ACCPM. We propose a new procedure … Read more