Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more

Boundedness Theorems for the Relaxation Method

A classical theorem by Block and Levin says that certain variants of the relaxation method for solving systems of linear inequalities produce bounded sequences of intermediate solutions even when running on inconsistent input data. Using a new approach, we prove a more general version of this result and answer an old open problem of quantifying … Read more

Convergence Analysis of a Long-Step Primal-Dual Infeasible Interior-Point LP Algorithm Based on Iterative Linear Solvers

In this paper, we consider a modified version of a well-known long-step primal-dual infeasible IP algorithm for solving the linear program $\min\{c^T x : Ax=b, \, x \ge 0\}$, $A \in \Re^{m \times n}$, where the search directions are computed by means of an iterative linear solver applied to a preconditioned normal system of equations. … Read more

On Tail Decay and Moment Estimates of a Condition Number for Random Linear Conic Systems

In this paper we study the distribution tails and the moments of a condition number which arises in the study of homogeneous systems of linear inequalities. We consider the case where this system is defined by a Gaussian random matrix and characterise the exact decay rates of the distribution tails, improve the existing moment estimates, … Read more

The structured distance to ill-posedness for conic systems

An important measure of conditioning of a conic linear system is the size of the smallest structured perturbation making the system ill-posed. We show that this measure is unchanged if we restrict to perturbations of low rank. We thereby derive a broad generalization of the classical Eckart-Young result characterizing the distance to ill-posedness for a … Read more

On the block-structured distance to non-surjectivity of sublinear mappings

We show that the block-structured distance to non-surjectivity of a set-valued sublinear mapping equals the reciprocal of a suitable block-structured norm of its inverse. This gives a natural generalization of the classical Eckart and Young identity for square invertible matrices. CitationMathematical Programming 103 (2005) pp. 561–573.

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods

Solving systems of linear equations with “normal” matrices of the form $A D^2 A^T$ is a key ingredient in the computation of search directions for interior-point algorithms. In this article, we establish that a well-known basis preconditioner for such systems of linear equations produces scaled matrices with uniformly bounded condition numbers as $D$ varies over … Read more

On an Extension of Condition Number Theory to Non-Conic Convex Optimization

The purpose of this paper is to extend, as much as possible, the modern theory of condition numbers for conic convex optimization: z_* := min_x {c’x | Ax-b \in C_Y, x \in C_X }, to the more general non-conic format: (GP_d): z_* := min_x {c’x | Ax-b \in C_Y, x \in P}, where P is … Read more

Smoothed Analysis of Interior-Point Algorithms: Termination

We perform a smoothed analysis of the termination phase of an interior-point method. By combining this analysis with the smoothed analysis of Renegar’s interior-point algorithm by Dunagan, Spielman and Teng, we show that the smoothed complexity of an interior-point algorithm for linear programming is $O (m^{3} \log (m/\sigma ))$. In contrast, the best known bound … Read more