MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This … Read more

A globally convergent modified conjugate-gradient line-search algorithm with inertia controlling

In this paper we have addressed the problem of unboundedness in the search direction when the Hessian is indefinite or near singular. A new algorithm has been proposed which naturally handles singular Hessian matrices, and is theoretically equivalent to the trust-region approach. This is accomplished by performing explicit matrix modifications adaptively that mimic the implicit … Read more

On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides

This work is concerned with the development and study of a class of limited memory preconditioners for the solution of sequences of linear systems. To this aim, we consider linear systems with the same symmetric positive definite matrix and multiple right-hand sides available in sequence. We first propose a general class of preconditioners, called Limited … Read more

A conjugate-gradient based approach for approximate solutions of quadratic programs

This paper deals with numerical behaviour and convergence properties of a recently presented column generation approach for optimization of so called step-and-shoot radiotherapy treatment plans. The approach and variants of it have been reported to be efficient in practice, finding near-optimal solutions by generating only a low number of columns. The impact of different restrictions … Read more

Iterative methods for finding a trust-region step

We consider the problem of finding an approximate minimizer of a general quadratic function subject to a two-norm constraint. The Steihaug-Toint method minimizes the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. The benefit of this approach is that an approximate solution … Read more

An Interior-Point Method for Large Scale Network Utility Maximization

We describe a specialized truncated-Newton primal-dual interior-point method that solves large scale network utility maximization problems, with concave utility functions, efficiently and reliably. Our method is not decentralized, but easily scales to problems with a million flows and links. We compare our method to a standard decentralized algorithm based on dual decomposition, and show by … Read more

On the behavior of the conjugate-gradient method on ill-conditioned problems

We study the behavior of the conjugate-gradient method for solving a set of linear equations, where the matrix is symmetric and positive definite with one set of eigenvalues that are large and the remaining are small. We characterize the behavior of the residuals associated with the large eigenvalues throughout the iterations, and also characterize the … Read more

Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems

We present the Sequential Subspace Optimization (SESOP) method for large scale smooth unconstrained problems. At each iteration we search for a minimum of the objective function over a subspace spanned by the current gradient and by directions of few previous steps. We also include into this subspace the direction from the starting point to the … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more

Iterative Solution of Augmented Systems Arising in Interior Methods

Iterative methods are proposed for certain augmented systems of linear equations that arise in interior methods for general nonlinear optimization. Interior methods define a sequence of KKT equations that represent the symmetrized (but indefinite) equations associated with Newton’s method for a point satisfying the perturbed optimality conditions. These equations involve both the primal and dual … Read more