On the Sublinear Convergence Rate of Multi-Block ADMM

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions whose variables are linked by linear constraints, has remained unclear for a very long time. Recently, Chen … Read more

Block-wise Alternating Direction Method of Multipliers for Multiple-block Convex Programming and Beyond

The alternating direction method of multipliers (ADMM) is a benchmark for solving a linearly constrained convex minimization model with a two-block separable objective function; and it has been shown that its direct extension to a multiple-block case where the objective function is the sum of more than two functions is not necessarily convergent. For the … Read more

Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-block Separable Convex Programming

Recently, a strictly contractive Peaceman- Rachford splitting method (SC-PRSM) was proposed to solve a convex minimization model with linear constraints and a separable objective function which is the sum of two functions without coupled variables. We show by an example that the SC-PRSM cannot be directly extended to the case where the objective function is … Read more

Convergence Rates with Inexact Nonexpansive Operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’ski{\u{\i}}-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of … Read more

On the Direct Extension of ADMM for Multi-block Separable Convex Programming and Beyond: From Variational Inequality Perspective

When the alternating direction method of multipliers (ADMM) is extended directly to a multi-block separable convex minimization model whose objective function is in form of more than two functions without coupled variables, it was recently shown that the convergence is not guaranteed. This fact urges to develop efficient algorithms that can preserve completely the numerical … Read more

Parallel Multi-Block ADMM with o(1/k) Convergence

This paper introduces a parallel and distributed extension to the alternating direction method of multipliers (ADMM). The algorithm decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This Jacobian-type algorithm is well suited for distributed computing and is particularly attractive for solving certain large-scale problems. This paper introduces … Read more

Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

Recently several methods were proposed for sparse optimization which make careful use of second-order information [11, 30, 17, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here … Read more

Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm

In this paper, we analyze the iteration-complexity of a generalized forward-backward (GFB) splitting algorithm, recently proposed in~\cite{gfb2011}, for minimizing the large class of composite objectives $f + \sum_{i=1}^n h_i$ on a Hilbert space, where $f$ has a Lipschitz-continuous gradient and the $h_i$’s are simple (i.e. whose proximity operator is easily computable ). We derive iteration-complexity … Read more

A Generalized Proximal Point Algorithm and its Convergence Rate

We propose a generalized proximal point algorithm (PPA), in the generic setting of finding a zero point of a maximal monotone operator. In addition to the classical PPA, a number of benchmark operator splitting methods in PDE and optimization literatures such as the Douglas-Rachford splitting method, Peaceman-Rachford splitting method, alternating direction method of multipliers, generalized … Read more

Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems

The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm … Read more