Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

Gradient methods for minimizing composite objective function

In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum, such problems, both … Read more

Nonparametric Estimation via Convex Programming

In the paper, we focus primarily on the problem of recovering a linear form g’*x of unknown “signal” x known to belong to a given convex compact set X in R^n from N independent realizations of a random variable taking values in a finite set, the distribution p of the variable being affinely parameterized by … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more

Convex duality and entropy-based moment closure: Characterizing degenerate densities

A common method for constructing a function from a finite set of moments is to solve a constrained minimization problem. The idea is to find, among all functions with the given moments, that function which minimizes a physically motivated, strictly convex functional. In the kinetic theory of gases, this functional is the kinetic entropy; the … Read more

Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat … Read more

A VARIATIONAL FORMULATION FOR FRAME-BASED INVERSE PROBLEMS

A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well … Read more

Exact regularization of convex programs

The regularization of a convex program is exact if all solutions of the regularized problem are also solutions of the original problem for all values of the regularization parameter below some positive threshold. For a general convex program, we show that the regularization is exact if and only if a certain selection problem has a … Read more

PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES

The notion of soft thresholding plays a central role in problems from various areas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal thresholding and investigate its properties, providing in particular several characterizations of … Read more

Geometric Dual Formulation for First-derivative-based Univariate Cubic $ Splines

With the objective of generating “shape-preserving” smooth interpolating curves that represent data with abrupt changes in magnitude and/or knot spacing, we study a class of first-derivative-based ${\cal C}^1$-smooth univariate cubic $L_1$ splines. An $L_1$ spline minimizes the $L_1$ norm of the difference between the first-order derivative of the spline and the local divided difference of … Read more