Online First-Order Framework for Robust Convex Optimization

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or … Read more

Faster Alternating Direction Method of Multipliers with a Worst-case O(1/n^2) Convergence Rate

The alternating direction method of multipliers (ADMM) is being widely used for various convex programming models with separable structures arising in specifically many scientific computing areas. The ADMM’s worst-case O(1/n) convergence rate measured by the iteration complexity has been established in the literature when its penalty parameter is a constant, where n is the iteration … Read more

Exact Worst-case Performance of First-order Methods for Composite Convex Optimization

We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case guarantees and explicit instances of optimization problems on which the algorithm reaches this … Read more

An optimal first order method based on optimal quadratic averaging

In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. Motivated by their work, we propose a close variant that iteratively maintains a quadratic global under-estimator of the … Read more

The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems

We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonconvex nonsmooth optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential updates … Read more

Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework

This paper describes a regularized variant of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise iteration-complexity of the new method is better than the corresponding one for the standard ADMM method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity … Read more

An Extended Frank-Wolfe Method with “In-Face” Directions, and its Application to Low-Rank Matrix Completion

We present an extension of the Frank-Wolfe method that is designed to induce near-optimal solutions on low-dimensional faces of the feasible region. We present computational guarantees for the method that trade off efficiency in computing near-optimal solutions with upper bounds on the dimension of minimal faces of iterates. We apply our method to the low-rank … Read more

New Computational Guarantees for Solving Convex Optimization Problems with First Order Methods, via a Function Growth Condition Measure

Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem f^* = \min_{x \in Q} f(x), where we presume knowledge of a strict lower bound f_slb < f^*. [Indeed, f_slb is naturally ... Read more

First-Order Algorithms for Convex Optimization with Nonseparate Objective and Coupled Constraints

In this paper we consider a block-structured convex optimization model, where in the objective the block-variables are nonseparable and they are further linearly coupled in the constraint. For the 2-block case, we propose a number of first-order algorithms to solve this model. First, the alternating direction method of multipliers (ADMM) is extended, assuming that it … Read more

On the convergence of the Sakawa-Shindo algorithm in stochastic control

We analyze an algorithm for solving stochastic control problems, based on Pontryagin’s maximum principle, due to Sakawa and Shindo in the deterministic case and extended to the stochastic setting by Mazliak. We assume that either the volatility is an affine function of the state, or the dynamics are linear. We obtain a monotone decrease of … Read more