On the von Neumann and Frank-Wolfe Algorithms with Away Steps

The von Neumann algorithm is a simple coordinate-descent algorithm to determine whether the origin belongs to a polytope generated by a finite set of points. When the origin is in the interior of the polytope, the algorithm generates a sequence of points in the polytope that converges linearly to zero. The algorithm’s rate of convergence … Read more

Conditional Gradient Sliding for Convex Optimization

In this paper, we present a new conditional gradient type method for convex optimization by utilizing a linear optimization (LO) oracle to minimize a series of linear functions over the feasible set. Different from the classic conditional gradient method, the conditional gradient sliding (CGS) algorithm developed herein can skip the computation of gradients from time … Read more

A First-Order Algorithm for the A-Optimal Experimental Design Problem: A Mathematical Programming Approach

We develop and analyse a first-order algorithm for the A-optimal experimental design problem. The problem is first presented as a special case of a parametric family of optimal design problems for which duality results and optimality conditions are given. Then, two first-order (Frank-Wolfe type) algorithms are presented, accompanied by a detailed time-complexity analysis of the … Read more

New Analysis and Results for the Conditional Gradient Method

We present new results for the conditional gradient method (also known as the Frank-Wolfe method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size rules and computational guarantees that depend naturally on the warm-start quality of the initial … Read more

The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

This paper considers a general class of iterative optimization algorithms, referred to as linear-optimization-based convex programming (LCP) methods, for solving large-scale convex programming (CP) problems. The LCP methods, covering the classic conditional gradient (CG) method (a.k.a., Frank-Wolfe method) as a special case, can only solve a linear optimization subproblem at each iteration. In this paper, … Read more

New concave penalty functions for improving the Feasibility Pump

Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave non-differentiable penalty functions for measuring solution integrality. We present computational results on binary … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more

A Modified Frank-Wolfe Algorithm for Computing Minimum-Area Enclosing Ellipsoidal Cylinders: Theory and Algorithms

We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder containing a finite set of points. This problem arises in optimal design in statistics when one is interested in a subset of the parameters. We provide convex formulations of this problem and its dual, and analyze a method based on the Frank-Wolfe … Read more

A Linearly Convergent Linear-Time First-Order Algorithm for Support Vector Classification with a Core Set Result

We present a simple, first-order approximation algorithm for the support vector classification problem. Given a pair of linearly separable data sets and $\epsilon \in (0,1)$, the proposed algorithm computes a separating hyperplane whose margin is within a factor of $(1-\epsilon)$ of that of the maximum-margin separating hyperplane. We discuss how our algorithm can be extended … Read more

Simultaneously solving seven optimization problems in relative scale

In this paper we develop and analyze an efficient algorithm which solves seven related optimization problems simultaneously, in relative scale. Each iteration of our method is very cheap, with main work spent on matrix-vector multiplication. We prove that if a certain sequence generated by the algorithm remains bounded, then the method must terminate in $O(1/\delta)$ … Read more