Nonlinear Stepsize Control, Trust Regions and Regularizations for Unconstrained Optimization

A general class of algorithms for unconstrained optimization is introduced, which subsumes the classical trust-region algorithm and two of its newer variants, as well as the cubic and quadratic regularization methods. A unified theory of global convergence to first-order critical points is then described for this class. An extension to projection-based trust-region algorithms for nonlinear … Read more

A globally convergent primal-dual interior-point 3D filter method for nonlinear SDP

This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite programming, which is the first multidimensional (three-dimensional) filter methods for interior-point methods, and of course for constrained optimization. A freshly new definition of filter entries is proposed, which is greatly different from those in all the current filter methods. A mixed norm is used … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results

In this paper we modify the original primal-dual interior-point filter method proposed in [18] for the solution of nonlinear programming problems. We introduce two new optimality filter entries based on the objective function, and thus better suited for the purposes of minimization, and propose conditions for using inexact Hessians. We show that the global convergence … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more

A primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed within the framework of the line search strategy. We show the global convergence property of our method. Finally some numerical … Read more

A globally convergent trust-region SQP method without a penalty function for nonlinearly constrained optimization

In this paper, we propose a new trust-region SQP method, which uses no penalty function, for solving nonlinearly constrained optimization problem. Our method consists of alternate two phases. Specifically, we alternately proceed the feasibility restoration phase and the objective function minimization phase. The global convergence property of the proposed method is shown. CitationCooperative Research Report … Read more

A Coordinate Gradient Descent Method for Linearly Constrained Smooth Optimization and Support Vector Machines Training

Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. … Read more

Nonlinear programming without a penalty function or a filter

A new method is introduced for solving equality constrained nonlinear optimization problems. This method does not use a penalty function, nor a barrier or a filter, and yet can be proved to be globally convergent to first-order stationary points. It uses different trust-regions to cope with the nonlinearities of the objective function and the constraints, … Read more

Global convergence of slanting filter methods for nonlinear programming

In this paper we present a general algorithm for nonlinear programming which uses a slanting filter criterion for accepting the new iterates. Independently of how these iterates are computed, we prove that all accumulation points of the sequence generated by the algorithm are feasible. Computing the new iterates by the inexact restoration method, we prove … Read more

Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more