The Arc-Item-Load and Related Formulations for the Cumulative Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) consists of finding the cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. While serving a particular customer, each vehicle picks up its demand and carries its weight throughout the rest of its route. While costs in the classical CVRP are … Read more

Integrality of Linearizations of Polynomials over Binary Variables using Additional Monomials

Polynomial optimization problems over binary variables can be expressed as integer programs using a linearization with extra monomials in addition to those arising in the given polynomial. We characterize when such a linearization yields an integral relaxation polytope, generalizing work by Del Pia and Khajavirad (SIAM Journal on Optimization, 2018) and Buchheim, Crama and Rodríguez-Heck … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

Fleet Sizing and Empty Freight Car Allocation

Empty freight car allocation problems as well as eet sizing problems depict highly important topics in the eld of railway cargo optimization. Fleet sizing is mainly used in order to nd the minimal number of freight cars ( xed costs) needed to operate the transportation network successfully (e.g. satisfy customer demands). After a consignment is transported … Read more

The Multiple Checkpoint Ordering Problem

The multiple Checkpoint Ordering Problem (mCOP) aims to find an optimal arrangement of n one-dimensional departments with given lengths such that the total weighted sum of their distances to m given checkpoints is minimized. In this paper we suggest an integer linear programming (ILP) approach and a dynamic programming (DP) algorithm, which is only exact … Read more

Location of charging stations in electric car sharing systems

Electric vehicles are a prime candidate for use within an urban car sharing system, both from an economic and environmental perspective. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system’s operational area where cars can be charged between uses. In this … Read more

Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand

In this article, we introduce and study a two-stage stochastic optimization problem suitable to solve strategic optimization problems of car-sharing systems that utilize electric cars. By combining the individual advantages of car-sharing and electric vehicles, such electric car-sharing systems may help to overcome future challenges related to pollution, congestion, or shortage of fossil fuels. A … Read more

Tighter MIP Models for Barge Container Ship Routing

This paper addresses the problem of optimal planning of a line for a barge container shipping company. Given estimated weekly splittable demands between pairs of ports and bounds for the turnaround time, our goal is to determine the subset of ports to be called and the amount of containers to be shipped between each pair … Read more

A Benders decomposition based framework for solving cable trench problems

In this work, we present an algorithmic framework based on Benders decomposition for the Capacitated p-Cable Trench Problem with Covering. We show that our approach can be applied to most variants of the Cable Trench Problem (CTP) that have been considered in the literature. The proposed algorithm is augmented with a stabilization procedure to accelerate … Read more

Exact Approaches for the Knapsack Problem with Setups

We consider a generalization of the knapsack problem in which items are partitioned into classes, each characterized by a fixed cost and capacity. We study three alternative Integer Linear Programming formulations. For each formulation, we design an efficient algorithm to compute the linear programming relaxation (one of which is based on Column Generation techniques). We … Read more