Variants in Modeling Time Aspects for the Multiple Traveling Salesmen Problem with Moving Targets

The multiple traveling salesmen problem with moving targets (MT-SPMT) is a generalization of the classical traveling salesmen problem (TSP), where the targets (cities or objects) are moving over time. Additionally, for each target a visibility time window is given. The task is to find routes for several salesmen so that each target is reached exactly … Read more

An ILP-based local search procedure for the VRP with pickups and deliveries

In this paper we address the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), an extension of the classical Vehicle Routing Problem (VRP) where we consider precedences among customers, and develop an Integer Linear Programming (ILP) based local search procedure. We consider the capacitated one-to-one variant, where a particular precedence must be satisfied between pairs … Read more

Approaches to a real-world train timetabling problem in a railway node

We consider the Train Timetabling Problem (TTP) in a railway node (i.e. a set of stations in an urban area interconnected by tracks), which calls for determining the best schedule for a given set of trains during a given time horizon, while satisfying several track operational constraints. In particular, we consider the context of a … Read more

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Recoverable Robust Knapsacks: $\GammahBcScenarios

In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim (2003,2004). In contrast to the robust approach, a limited recovery action is allowed, i.e., upto k items may be removed when the actual weights are known. This problem is motivated by … Read more

Optimizing the Layout of Proportional Symbol Maps: Polyhedra and Computation

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical quantities that they represent. We present two novel … Read more

Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation

We consider two approaches for solving the classical minimum vertex coloring problem�that is, the problem of coloring the vertices of a graph so that adjacent vertices have different colors and minimizing the number of used colors, namely, constraint programming and column generation. Constraint programming is able to solve very efficiently many of the benchmarks but … Read more

A Class Representative Model for Pure Parsimony Haplotyping

Parsimonious haplotype estimation from aligned Single Nucleotide Polymorphism (SNP) fragments consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. This problem is known to be NP-Hard. Here we describe a new integer linear-programming model to tackle this problem based on the concept of class representatives, already used for … Read more

Solving chance-constrained combinatorial problems to optimality

The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose definition impacts strongly on the quality of the linear … Read more

Tractable algorithms for chance-constrained combinatorial problems

This paper aims at proposing tractable algorithms to find effectively good solutions to large size chance-constrained combinatorial problems. A new robust model is introduced to deal with uncertainty in mixed-integer linear problems. It is shown to be strongly related to chance-constrained programming when considering pure 0-1 problems. Furthermore, its tractability is highlighted. Then, an optimization … Read more