Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation
We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton’s method for self-concordant functions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori en Teboulle [Mathematical Programming, 145(1-2):451–482, 2014], and extends recent performance estimation results for the method of … Read more