Sufficient Conditions for Lipschitzian Error Bounds for Complementarity Systems

We are concerned with Lipschitzian error bounds and Lipschitzian stability properties for solutions of a complementarity system. For this purpose, we deal with a nonsmooth slack-variable reformulation of the complementarity system, and study conditions under which the reformulation serves as a local error bound for the solution set of the complementarity system. We also discuss … Read more

Perturbation of error bounds

Our aim in the current article is to extend the developments in Kruger, Ngai & Th\’era, SIAM J. Optim. 20(6), 3280–3296 (2010) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by proper lower semicontinuous under data perturbations. We propose new … Read more

An induction theorem and nonlinear regularity models

A general nonlinear regularity model for a set-valued mapping $F:X\times\R_+\rightrightarrows Y$, where $X$ and $Y$ are metric spaces, is considered using special iteration procedures, going back to Banach, Schauder, Lusternik and Graves. Namely, we revise the \emph{induction theorem} from Khanh, \emph{J. Math. Anal. Appl.}, 118 (1986) and employ it to obtain basic estimates for studying … Read more

On metric regularity for weakly almost piecewise smooth functions and some applications in nonlinear semidefinite programming

The one-to-one relation between the points fulfilling the KKT conditions of an optimization problem and the zeros of the corresponding Kojima function is well-known. In the present paper we study the interplay between metric regularity and strong regularity of this a priori nonsmooth function in the context of semidefinite programming. Having in mind the topological … Read more

Slopes of multifunctions and extensions of metric regularity

This article aims to demonstrate how the definitions of slopes can be extended to multi-valued mappings between metric spaces and applied for characterizing metric regularity. Several kinds of local and nonlocal slopes are defined and several metric regularity properties for set-valued mappings between metric spaces are investigated. CitationPublished in Vietnam Journal of Mathematics 40:2&3(2012) 355-369. … Read more

DC approach to regularity of convex multifunctions with applications to infinite systems

The paper develops a new approach to the study of metric regularity and related well-posedness properties of convex set-valued mappings between general Banach spaces by reducing them to unconstrained minimization problems with objectives given as the difference of convex (DC) functions. In this way we establish new formulas for calculating the exact regularity bound of … Read more

Implicit Multifunction Theorems in complete metric spaces

In this paper, we establish some new characterizations of the metric regularity of implicit multifunctions in complete metric spaces by using the lower semicontinuous envelopes of the distance functions for set-valued mappings. Through these new characterizations it is possible to investigate implicit multifunction theorems based on coderivatives and on contingent derivatives as well as the … Read more

Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity

We propose a new concept of generalized differentiation of set-valued maps that captures the first order information. This concept encompasses the standard notions of Frechet differentiability, strict differentiability, calmness and Lipschitz continuity in single-valued maps, and the Aubin property and Lipschitz continuity in set-valued maps. We present calculus rules, sharpen the relationship between the Aubin … Read more

Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more

Alternating projections on manifolds

We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersection problem, a natural measure of conditioning. … Read more