Computing Feasible Points for Binary MINLPs with MPECs

Nonconvex mixed-binary nonlinear optimization problems frequently appear in practice and are typically extremely hard to solve. In this paper we discuss a class of primal heuristics that are based on a reformulation of the problem as a mathematical program with equilibrium constraints. We then use different regularization schemes for this class of problems and use … Read more

The Multilinear polytope for acyclic hypergraphs

We consider the Multilinear polytope defined as the convex hull of the set of binary points satisfying a collection of multilinear equations. Such sets are of fundamental importance in many types of mixed-integer nonlinear optimization problems, such as binary polynomial optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of the Multilinear polytope … Read more

Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching

This paper studies mixed-integer nonlinear programs featuring disjunctive constraints and trigonometric functions. We first characterize the convex hull of univariate quadratic on/off constraints in the space of original variables using perspective functions. We then introduce new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical bounds. These results are used to further tighten recent … Read more

An Adaptive Discretization MINLP Algorithm for Optimal Synthesis of Decentralized Energy Supply Systems

Decentralized energy supply systems (DESS) are highly integrated and complex systems designed to meet time-varying energy demands, e.g., heating, cooling, and electricity. The synthesis problem of DESS addresses combining various types of energy conversion units, choosing their sizing and operations to maximize an objective function, e.g., the net present value. In practice, investment costs and … Read more

Three ideas for a Feasibility Pump for nonconvex MINLP

We describe an implementation of the Feasibility Pump heuristic for nonconvex MINLPs. Our implementation takes advantage of three novel techniques, which we discuss here: a hierarchy of procedures for obtaining an integer solution, a generalized definition of the distance function that takes into account the nonlinear character of the problem, and the insertion of linearization … Read more

Minimization of Akaike’s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program

Akaike’s information criterion (AIC) is a measure of the quality of a statistical model for a given set of data. We can determine the best statistical model for a particular data set by the minimization of the AIC. Since we need to evaluate exponentially many candidates of the model by the minimization of the AIC, … Read more

An Exact Algorithm for a Resource Allocation Problem in Mobile Wireless Communications

We consider a challenging resource allocation problem arising in mobile wireless communications. The goal is to allocate the available channels and power in a so-called OFDMA system, in order to maximise the transmission rate, subject to quality of service (QoS) constraints. Standard MINLP software struggled to solve even small instances of this problem. Using outer … Read more

Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. … Read more

Three Enhancements for Optimization-Based Bound Tightening

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more