A globally trust-region LP-Newton method for nonsmooth functions under the Hölder metric subregularity
We describe and analyse a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set, such formulation includes Karush-Kuhn-Tucker (KKT) systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a … Read more