Complexity bounds for second-order optimality in unconstrained optimization

This paper examines worst-case evaluation bounds for finding weak minimizers in unconstrained optimization. For the cubic regularization algorithm, Nesterov and Polyak (2006) and Cartis, Gould and Toint (2010) show that at most O(epsilon^{-3}) iterations may have to be performed for finding an iterate which is within epsilon of satisfying second-order optimality conditions. We first show … Read more

On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization

The (optimal) function/gradient evaluations worst-case complexity analysis available for the Adaptive Regularizations algorithms with Cubics (ARC) for nonconvex smooth unconstrained optimization is extended to finite-difference versions of this algorithm, yielding complexity bounds for first-order and derivative free methods applied on the same problem class. A comparison with the results obtained for derivative-free methods by Vicente … Read more

A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization … Read more

A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization

We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable on … Read more

Identifying Active Manifolds in Regularization Problems

In this work we consider the problem $\min_x \{ f(x) + P(x) \}$, where $f$ is $\mathcal{C}^2$ and $P$ is nonsmooth, but contains an underlying smooth substructure. Specifically, we assume the function $P$ is prox-regular partly smooth with respect to a active manifold $\M$. Recent work by Tseng and Yun \cite{tseng-yun-2009}, showed that such a … Read more

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications, the relationship between decision … Read more

An algorithmic framework for MINLP with separable non-convexity

Global optimization algorithms, e.g., spatial branch-and-bound approaches like those implemented in codes such as BARON and COUENNE, have had substantial success in tackling complicated, but generally small scale, non-convex MINLPs (i.e., mixed-integer nonlinear programs having non-convex continuous relaxations). Because they are aimed at a rather general class of problems, the possibility remains that larger instances … Read more

Eigenvalue techniques for proving bounds for convex objective, nonconvex programs

We describe techniques combining the S-lemma and computation of projected quadratics which experimentally yield strong bounds on the value of convex quadratic programs with nonconvex constraints Citation unpublished report, Columbia University, March 2009 Article Download View Eigenvalue techniques for proving bounds for convex objective, nonconvex programs

A Redistributed Proximal Bundle Method for Nonconvex Optimization

Proximal bundle methods have been shown to be highly successful optimization methods for unconstrained convex problems with discontinuous first derivatives. This naturally leads to the question of whether proximal variants of bundle methods can be extended to a nonconvex setting. This work proposes an approach based on generating cutting-planes models, not of the objective function … Read more