Nonlinear matrix recovery using optimization on the Grassmann manifold

We investigate the problem of recovering a partially observed high-rank matrix whose columns obey a nonlinear structure such as a union of subspaces, an algebraic variety or grouped in clusters. The recovery problem is formulated as the rank minimization of a nonlinear feature map applied to the original matrix, which is then further approximated by … Read more

An abstract convergence framework with application to inertial inexact forward-backward methods

In this paper we introduce a novel abstract descent scheme suited for the minimization of proper and lower semicontinuous functions. The proposed abstract scheme generalizes a set of properties that are crucial for the convergence of several first-order methods designed for nonsmooth nonconvex optimization problems. Such properties guarantee the convergence of the full sequence of … Read more

On obtaining the convex hull of quadratic inequalities via aggregations

A classical approach for obtaining valid inequalities for a set involves weighted aggregations of the inequalities that describe such set. When the set is described by linear inequalities, thanks to the Farkas lemma, we know that every valid inequality can be obtained using aggregations. When the inequalities describing the set are two quadratics, Yildiran showed … Read more

Local Minimizers of the Crouzeix Ratio: A Nonsmooth Optimization Case Study

Given a square matrix $A$ and a polynomial $p$, the Crouzeix ratio is the norm of the polynomial on the field of values of $A$ divided by the 2-norm of the matrix $p(A)$. Crouzeix’s conjecture states that the globally minimal value of the Crouzeix ratio is 0.5, regardless of the matrix order and polynomial degree, … Read more

New Bregman proximal type algorithms for solving DC optimization problems

Difference of Convex (DC) optimization problems have objective functions that are differences between two convex functions. Representative ways of solving these problems are the proximal DC algorithms, which require that the convex part of the objective function have L-smoothness. In this article, we propose the Bregman Proximal DC Algorithm (BPDCA) for solving large-scale DC optimization … Read more

Factorization of completely positive matrices using iterative projected gradient steps

We aim to factorize a completely positive matrix by using an optimization approach which consists in the minimization of a nonconvex smooth function over a convex and compact set. To solve this problem we propose a projected gradient algorithm with parameters that take into account the effects of relaxation and inertia. Both projection and gradient … Read more

A Proximal Quasi-Newton Trust-Region Method for Nonsmooth Regularized Optimization

We develop a trust-region method for minimizing the sum of a smooth term f and a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes apossibly nonconvex model of f+h in a trust region. The model coincides with f+h in value and subdifferential at the center. We establish global … Read more

Further developments of methods for traversing regions of non-convexity in optimization problems

This paper continues to address one of its author’s obsession with the well- known problem of dealing with non-convexity during the minimization of a nonlinear function f(x) by Newton-like methods. It builds on some proposals made by the present authors in “A Comparison of methods for traversing regions of non-convexity in optimization problems”. (Numerical Algorithms … Read more

A Computational Study of Perspective Cuts

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study … Read more

A Framework of Inertial Alternating Direction Method of Multipliers for Non-Convex Non-Smooth Optimization

In this paper, we propose an algorithmic framework dubbed inertial alternating direction methods of multipliers (iADMM), for solving a class of nonconvex nonsmooth multiblock composite optimization problems with linear constraints. Our framework employs the general minimization-majorization (MM) principle to update each block of variables so as to not only unify the convergence analysis of previous … Read more