Nonlinear matrix recovery using optimization on the Grassmann manifold

We investigate the problem of recovering a partially observed high-rank matrix whose columns obey a nonlinear structure such as a union of subspaces, an algebraic variety or grouped in clusters. The recovery problem is formulated as the rank minimization of a nonlinear feature map applied to the original matrix, which is then further approximated by … Read more

An Efficient Retraction Mapping for the Symplectic Stiefel Manifold

This article introduces a new retraction on the symplectic Stiefel manifold. The operation that requires the highest computational cost to compute the novel retraction is a matrix inversion of size $2p$–by–$2p$, which is much less expensive than those required for the available retractions in the literature. Later, with the new retraction, we design a constraint … Read more

Proximal Point Algorithm on the Stiefel Manifold

In this paper, we consider the problem of minimizing a continuously differentiable function on the Stiefel manifold. To solve this problem, we develop a geodesic-free proximal point algorithm, which does not require the use of the Riemannian distance. The proposed method can be regarded as an iterative fixed-point method, which repeatedly applies a proximal operator … Read more

Riemannian Optimization on the Symplectic Stiefel Manifold

The symplectic Stiefel manifold, denoted by $\mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $\mathbb{R}^{2p}$ and $\mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2n\times 2n$ symplectic matrices. Optimization problems on $\mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order … Read more

Riemannian conjugate gradient methods with inverse retraction

We propose a new class of Riemannian conjugate gradient (CG) methods, in which inverse retraction is used instead of vector transport for search direction construction. In existing methods, differentiated retraction is often used for vector transport to move the previous search direction to the current tangent space. However, a different perspective is adopted here, motivated … Read more

A Riemannian conjugate gradient method for optimization on the Stiefel manifold

In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them … Read more