Robust Portfolio Optimization with Derivative Insurance Guarantees

Robust portfolio optimization finds the worst-case portfolio return given that the asset returns are realized within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns … Read more

Short Sales in Log-Robust Portfolio Management

This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral … Read more

Lipschitz behavior of the robust regularization

To minimize or upper-bound the value of a function “robustly”, we might instead minimize or upper-bound the “epsilon-robust regularization”, defined as the map from a point to the maximum value of the function within an epsilon-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius … Read more

Progressive Hedging Innovations for a Class of Stochastic Resource Allocation Problems

Progressive hedging (PH) is a scenario-based decomposition technique for solving stochastic programs. While PH has been successfully applied to a number of problems, a variety of issues arise when implementing PH in practice, especially when dealing with very difficult or large-scale mixed-integer problems. In particular, decisions must be made regarding the value of the penalty … Read more

Cutting-Set Methods for Robust Convex Optimization with Pessimizing Oracles

We consider a general worst-case robust convex optimization problem, with arbitrary dependence on the uncertain parameters, which are assumed to lie in some given set of possible values. We describe a general method for solving such a problem, which alternates between optimization and worst-case analysis. With exact worst-case analysis, the method is shown to converge … Read more

An Efficient Algorithm for Computing Robust Minimum Capacity s-t Cuts

The Minimum Capacity s-t Cut Problem (Min Cut) is an intensively studied problem in combinatorial optimization. In this paper, we study Min Cut when arc capacities are uncertain but known to exist in pre-specified intervals. This framework can be used to model many real-world applications of Min Cut under data uncertainty such as in open-pit … Read more

A Log-Robust Optimization Approach to Portfolio Management

In this paper we present a robust optimization approach to portfolio management under uncertainty that (i) builds upon the well-established Lognormal model for stock prices while addressing its limitations, and (ii) incorporates the imperfect knowledge on the true distribution of the continuously compounded rates of return, i.e., the increments of the logarithm of the stock … Read more

Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty, meaning that the MV efficient portfolios constructed with an estimate of the model parameters (i.e., the expected return vector and covariance of asset returns) can give very poor performance for another set of parameters that is similar and statistically hard to distinguish from the … Read more

A Min-Max Regret Robust Optimization Approach for Large Scale Full Factorial Scenario Design of Data Uncertainty

This paper presents a three-stage optimization algorithm for solving two-stage robust decision making problems under uncertainty with min-max regret objective. The structure of the first stage problem is a general mixed integer (binary) linear programming model with a specific model of uncertainty that can occur in any of the parameters, and the second stage problem … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more