On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully-adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right hand side of the constraints is … Read more

Worst-Case Value-at-Risk of Non-Linear Portfolios

Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR … Read more

Robust Optimization Made Easy with ROME

We introduce an algebraic modeling language, named ROME, for a class of robust optimization problems. ROME serves as an intermediate layer between the modeler and optimization solver engines, allowing modelers to express robust optimization problems in a mathematically meaningful way. In this paper, we highlight key features of ROME which expediates the modeling and subsequent … Read more

Distributionally Robust Optimization and its Tractable Approximations

In this paper, we focus on a linear optimization problem with uncertainties, having expectations in the objective and in the set of constraints. We present a modular framework to obtain an approximate solution to the problem that is distributionally robust, and more flexible than the standard technique of using linear rules. Our framework begins by … Read more

Robust Linear Optimization With Recourse

We propose an approach to linear optimization with recourse that does not involve a probabilistic description of the uncertainty, and allows the decision-maker to adjust the degree of robustness of the model while preserving its linear properties. We model random variables as uncertain parameters belonging to a polyhedral uncertainty set and minimize the sum of … Read more

Primal and dual linear decision rules in stochastic and robust optimization

Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modelled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the … Read more

Robust Portfolio Optimization with Derivative Insurance Guarantees

Robust portfolio optimization finds the worst-case portfolio return given that the asset returns are realized within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns … Read more

Short Sales in Log-Robust Portfolio Management

This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral … Read more

Lipschitz behavior of the robust regularization

To minimize or upper-bound the value of a function “robustly”, we might instead minimize or upper-bound the “epsilon-robust regularization”, defined as the map from a point to the maximum value of the function within an epsilon-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius … Read more

Progressive Hedging Innovations for a Class of Stochastic Resource Allocation Problems

Progressive hedging (PH) is a scenario-based decomposition technique for solving stochastic programs. While PH has been successfully applied to a number of problems, a variety of issues arise when implementing PH in practice, especially when dealing with very difficult or large-scale mixed-integer problems. In particular, decisions must be made regarding the value of the penalty … Read more