Robust and Distributionally Robust Optimization Models for Support Vector Machine

In this paper we present novel data-driven optimization models for Support Vector Machines (SVM), with the aim of linearly separating two sets of points that have non-disjoint convex closures. Traditional classi cation algorithms assume that the training data points are always known exactly. However, real-life data are often subject to noise. To handle such uncertainty, we … Read more

A Robust Approach for Modeling Limited Observability in Bilevel Optimization

In bilevel optimization, hierarchical optimization problems are considered in which two players – the leader and the follower – act and react in a non-cooperative and sequential manner. In many real-world applications, the leader may face a follower whose reaction deviates from the one expected by the leader due to some kind of bounded rationality. … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more

Pareto Adaptive Robust Optimality via a Fourier-Motzkin Elimination Lens

We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear Adaptive Robust Optimization (ARO) problems. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another such pair that performs at least as good in all … Read more

Safely Learning Dynamical Systems from Short Trajectories

A fundamental challenge in learning to control an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of … Read more

A General Framework for Optimal Data-Driven Optimization

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision … Read more

Robust Convex Optimization: A New Perspective That Unifies And Extends

Robust convex constraints are difficult to handle, since finding the worst-case scenario is equivalent to maximizing a convex function. In this paper, we propose a new approach to deal with such constraints that unifies approaches known in the literature and extends them in a significant way. The extension is either obtaining better solutions than the … Read more

Global Optimization for the Multilevel European Gas Market System with Nonlinear Flow Models on Trees

The European gas market is implemented as an entry-exit system, which aims to decouple transport and trading of gas. It has been modeled in the literature as a multilevel problem, which contains a nonlinear flow model of gas physics. Besides the multilevel structure and the nonlinear flow model, the computation of so-called technical capacities is … Read more

Affinely Adjustable Robust Linear Complementarity Problems

Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties – especially in the sense of robust optimization – is still in … Read more

Regret Minimization and Separation in Multi-Bidder Multi-Item Auctions

We study a robust auction design problem with a minimax regret objective, where a seller seeks a mechanism for selling multiple items to multiple bidders with additive values. The seller knows that the bidders’ values range over a box uncertainty set but has no information on their probability distribution. The robust auction design model we … Read more