The positive semidefinite Grothendieck problem with rank constraint

Given a positive integer n and a positive semidefinite matrix A = (A_{ij}) of size m x m, the positive semidefinite Grothendieck problem with rank-n-constraint is (SDP_n) maximize \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i \cdot x_j, where x_1, …, x_m \in S^{n-1}. In this paper we design a polynomial time approximation algorithm for SDP_n achieving an approximation … Read more

On the nonexistence of sum of squares certificates for the BMV conjecture

The algebraic reformulation of the BMV conjecture is equivalent to a family of dimensionfree tracial inequalities involving positive semidefinite matrices. Sufficient conditions for these to hold in the form of algebraic identities involving polynomials in noncommuting variables have been given by Markus Schweighofer and the second author. Later the existence of these certificates has been … Read more

Smoothing techniques for solving semidefinite programs with many constraints

We use smoothing techniques to solve approximately mildly structured semidefinite programs with many constraints. As smoothing techniques require a specific problem format, we introduce an alternative problem formulation that fulfills the structural assumptions. The resulting algorithm has a complexity that depends linearly both on the number of constraints and on the inverse of the accuracy. … Read more

Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry

Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in: [Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming Relaxations for the Quadratic Assignment Problem. Journal of Combinatorial Optimization, 2,71–109, 1998.] Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively small instances. For QAP … Read more

A Comparison of Lower Bounds for the Symmetric Circulant Traveling Salesman Problem

When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare … Read more

On the Central Paths and Cauchy Trajectories in Semidefinite Programming

In this work, we study the properties of central paths, defined with respect to a large class of penalty and barrier functions, for convex semidefinite programs. The type of programs studied here is characterized by the minimization of a smooth and convex objective function subject to a linear matrix inequality constraint. So, it is a … Read more

Worst-Case Value-at-Risk of Non-Linear Portfolios

Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR … Read more

Alternating Direction Augmented Lagrangian Methods for semidefinite programming

We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables … Read more

On the computational complexity of gap-free duals for semidefinite programming

We consider the complexity of gap-free duals in semidefinite programming. Using the theory of homogeneous cones we provide a new representation of Ramana’s gap-free dual and show that the new formulation has a much better complexity than originally proved by Ramana. Citation COR@L Technical Report, Lehigh University Article Download View On the computational complexity of … Read more

SINCO – a greedy coordinate ascent method for sparse inverse covariance selection problem

In this paper, we consider the sparse inverse covariance selection problem which is equivalent to structure recovery of a Markov Network over Gaussian variables. We introduce a simple but efficient greedy algorithm, called {\em SINCO}, for solving the Sparse INverse COvariance problem. Our approach is based on coordinate ascent method which naturally preserves the sparsity … Read more