A derivative-free trust-region approach for Low Order-Value Optimization problems

The Low Order-Value Optimization (LOVO) problem involves minimizing the minimum among a finite number of function values within a feasible set. LOVO has several practical applications such as robust parameter estimation, protein alignment, portfolio optimization, among others. In this work, we are interested in the constrained nonlinear optimization LOVO problem of minimizing the minimum between … Read more

The Decentralized Trust-Region Method with Second-Order Approximations

This paper presents a novel decentralized trust-region framework that systematically incorporates second-order information to solve general nonlinear optimization problems in multi-agent networks. Our approach constructs local quadratic models that simultaneously capture objective curvature and enforce consensus through penalty terms, while supporting multiple Hessian approximation strategies including exact Hessians, limited-memory quasi-Newton methods, diagonal preconditioners, and matrix-free … Read more

A Finite-Difference Trust-Region Method for Convexly Constrained Smooth Optimization

We propose a derivative-free trust-region method based on finite-difference gradient approximations for smooth optimization problems with convex constraints. The proposed method does not require computing an approximate stationarity measure. For nonconvex problems, we establish a worst-case complexity bound of \(\mathcal{O}\!\left(n\left(\frac{L}{\sigma}\epsilon\right)^{-2}\right)\) function evaluations for the method to reach an \(\left(\frac{L}{\sigma}\epsilon\right)\)-approximate stationary point, where \(n\) is the … Read more

Projected proximal gradient trust-region algorithm for nonsmooth optimization

We consider trust-region methods for solving optimization problems where the objective is the sum of a smooth, nonconvex function and a nonsmooth, convex regularizer. We extend the global convergence theory of such methods to include worst-case complexity bounds in the case of unbounded model Hessian growth, and introduce a new, simple nonsmooth trust-region subproblem solver … Read more

TRFD: A Derivative-Free Trust-Region Method Based on Finite Differences for Composite Nonsmooth Optimization

In this work we present TRFD, a derivative-free trust-region method based on finite differences for minimizing composite functions of the form \(f(x)=h(F(x))\), where \(F\) is a black-box function assumed to have a Lipschitz continuous Jacobian, and \(h\) is a known convex Lipschitz function, possibly nonsmooth. The method approximates the Jacobian of \(F\) via forward finite … Read more

Black-box Optimization Algorithms for Regularized Least-squares Problems

We consider the problem of optimizing the sum of a smooth, nonconvex function for which derivatives are unavailable, and a convex, nonsmooth function with easy-to-evaluate proximal operator. Of particular focus is the case where the smooth part has a nonlinear least-squares structure. We adapt two existing approaches for derivative-free optimization of nonsmooth compositions of smooth … Read more

Local Convergence Analysis of an Inexact Trust-Region Method for Nonsmooth Optimization

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1–40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated … Read more

Efficient Proximal Subproblem Solvers for a Nonsmooth Trust-Region Method

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1-40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex and nonsmooth convex function. The principle expense of this method is in computing a trial iterate that satisfies the so-called fraction of Cauchy decrease condition—a bound that ensures … Read more

Shape-Changing Trust-Region Methods Using Multipoint Symmetric Secant Matrices

In this work, we consider methods for large-scale and nonconvex unconstrained optimization. We propose a new trust-region method whose subproblem is defined using a so-called “shape-changing” norm together with densely-initialized multipoint symmetric secant (MSS) matrices to approximate the Hessian. Shape-changing norms and dense initializations have been successfully used in the context of traditional quasi Newton … Read more

First- and Second-Order High Probability Complexity Bounds for Trust-Region Methods with Noisy Oracles

In this paper, we present convergence guarantees for a modified trust-region method designed for minimizing objective functions whose value is computed with noise and for which gradient and Hessian estimates are inexact and possibly random. In order to account for the noise, the method utilizes a relaxed step acceptance criterion and a cautious trust-region radius … Read more