A Matrix-Free Trust-Region Newton Algorithm for Convex-Constrained Optimization

We describe a matrix-free trust-region algorithm for solving convex-constrained optimization problems that uses the spectral projected gradient method to compute trial steps. To project onto the intersection of the feasible set and the trust region, we reformulate and solve the dual projection problem as a one-dimensional root finding problem. We demonstrate our algorithm’s performance on … Read more

Strong Evaluation Complexity of An Inexact Trust-Region Algorithm for Arbitrary-Order Unconstrained Nonconvex Optimization

A trust-region algorithm using inexact function and derivatives values is introduced for solving unconstrained smooth optimization problems. This algorithm uses high-order Taylor models and allows the search of strong approximate minimizers of arbitrary order. The evaluation complexity of finding a $q$-th approximate minimizer using this algorithm is then shown, under standard conditions, to be $\mathcal{O}\big(\min_{j\in\{1,\ldots,q\}}\epsilon_j^{-(q+1)}\big)$ … Read more

Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods

Inverse optimization – determining parameters of an optimization problem that render a given solution optimal – has received increasing attention in recent years. While significant inverse optimization literature exists for convex optimization problems, there have been few advances for discrete problems, despite the ubiquity of applications that fundamentally rely on discrete decision-making. In this paper, … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more

Expensive multi-objective optimization of electromagnetic mixing in a liquid metal

This paper presents a novel trust-region method for the optimization of multiple expensive functions. We apply this method to a biobjective optimization problem in fluid mechanics, the optimal mixing of particles in a flow in a closed container. The three-dimensional time-dependent flows are driven by Lorentz forces that are generated by an oscillating permanent magnet … Read more

Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization

Worst-case complexity guarantees for nonconvex optimization algorithms have been a topic of growing interest. Multiple frameworks that achieve the best known complexity bounds among a broad class of first- and second-order strategies have been proposed. These methods have often been designed primarily with complexity guarantees in mind and, as a result, represent a departure from … Read more

A Fully Stochastic Second-Order Trust Region Method

A stochastic second-order trust region method is proposed, which can be viewed as a second-order extension of the trust-region-ish (TRish) algorithm proposed by Curtis et al. [INFORMS J. Optim. 1(3) 200–220, 2019]. In each iteration, a search direction is computed by (approximately) solving a trust region subproblem defined by stochastic gradient and Hessian estimates. The … Read more

Representation of the Pareto front for heterogeneous multi-objective optimization

Optimization problems with multiple objectives which are expensive, i.e. where function evaluations are time consuming, are difficult to solve. Finding at least one locally optimal solution is already a difficult task. In case only one of the objective functions is expensive while the others are cheap, for instance analytically given, this can be used in … Read more

Hybrid methods for nonlinear least squares problems

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function $F(x) = (1/2) f^T(x) f(x)$, where $x \in R^n$ and $f \in R^m$, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more