Computing Minimum Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points $\cS = \{x^1,\ldots,x^m\} \subset \R^n$ and $\eps > 0$, we propose and analyze an algorithm for the problem of computing a $(1 + \eps)$-approximation to the the minimum volume axis-aligned ellipsoid enclosing $\cS$. We establish that our algorithm is polynomial for fixed $\eps$. In addition, the algorithm returns a small … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Sartenaer, Toint (2004), and provide significant numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a very satisfactory compromise between reliability and efficiency. The resulting default algorithm is then compared to alternative … Read more

An Extension of the Proximal Point Method for Quasiconvex Minimization

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on the Euclidean space and the nonnegative orthant. For the unconstrained minimization problem, assumming that the function is bounded from below and lower semicontinuous we prove that iterations fxkg given by 0 2 b@(f(:)+(k=2)jj:􀀀xk􀀀1jj2)(xk) are … Read more

Convergence analysis of Riemannian trust-region methods

A general scheme for trust-region methods on Riemannian manifolds is proposed and analyzed. Among the various approaches available to (approximately) solve the trust-region subproblems, particular attention is paid to the truncated conjugate-gradient technique. The method is illustrated on problems from numerical linear algebra. Citation 19 June 2006 Article Download View Convergence analysis of Riemannian trust-region … Read more

Sum of Squares Method for Sensor Network Localization

We formulate the sensor network localization problem as finding the global minimizer of a quartic polynomial. Then sum of squares (SOS) relaxations can be applied to solve it. However, the general SOS relaxations are too expensive to implement for large problems. Exploiting the special features of this polynomial, we propose a new structured SOS relaxation, … Read more

An Extension of a Minimax Approach to Multiple Classification

When the mean vectors and the covariance matrices of two classes are available in a binary classification problem, Lanckriet et al.\ \cite{mpm} propose a minimax approach for finding a linear classifier which minimizes the worst-case (maximum) misclassification probability. We extend the minimax approach to a multiple classification problem, where the number $m$ of classes could … Read more

Generalized Mixed Integer Rounding Valid Inequalities

We present new families of valid inequalities for (mixed) integer programming (MIP) problems. These valid inequalities are based on a generalization of the 2-step mixed integer rounding (MIR), proposed by Dash and Günlük (2006). We prove that for any positive integer n, n facets of a certain (n+1)-dimensional mixed integer set can be obtained through … Read more

On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from … Read more

Linear Programming Based Lifting and its Application to Primal Cutting Plane Algorithms

We propose an approximate lifting procedure for general integer programs. This lifting procedure uses information from multiple constraints of the problem formulation and can be used to strengthen formulations and cuts for mixed integer programs. In particular we demonstrate how it can be applied to improve Gomory’s fractional cut which is central to Glover’s primal … Read more

Uncapacitated Lot Sizing with Backlogging: The Convex Hull

An explicit description of the convex hull of solutions to the uncapacitated lot-sizing problem with backlogging, in its natural space of production, setup, inventory and backlogging variables, has been an open question for many years. In this paper, we identify facet-defining inequalities that subsume all previously known valid inequalities for this problem. We show that … Read more