A New Class of Interior Proximal Methods for Optimization over the Positive Orthant

In this work we present a family of variable metric interior proximal methods for solving optimization problems under nonnegativity constraints. We define two algorithms, in the inexact and exact forms. The kernels are metrics generated by diagonal matrices in each iteration and the regularization parameters are conveniently chosen to force the iterates to be interior … Read more

On the Second-Order Feasibility Cone: Primal-Dual Representation and Efficient Projection

We study the second-order feasibility cone F = { y : \| My \| \le g^Ty } for given data (M,g). We construct a new representation for this cone and its dual based on the spectral decomposition of the matrix M^TM – gg^T. This representation is used to efficiently solve the problem of projecting an … Read more

An Efficient Re-scaled Perceptron Algorithm for Conic Systems

The classical perceptron algorithm is an elementary row-action/relaxation algorithm for solving a homogeneous linear inequality system Ax > 0. A natural condition measure associated with this algorithm is the Euclidean width t of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by 1/t^2, see Rosenblatt 1962. Dunagan and … Read more

A Brief History of Filter Methods

We consider the question of global convergence of iterative methods for nonlinear programming problems. Traditionally, penalty functions have been used to enforce global convergence. In this paper we review a recent alternative, so-called filter methods. Instead of combing the objective and constraint violation into a single function, filter methods view nonlinear optimization as a biobjective … Read more

Metric regularity and systems of generalized equations

The paper is devoted to a revision of the metric regularity property for mappings between metric or Banach spaces. Some new concepts are introduced: uniform metric regularity, metric regularity along a subspace, strong metric regularity for mappings into product spaces, when each component is perturbed independently. Regularity criteria are established based on a nonlocal version … Read more

On Safe Tractable Approximations of Chance Constrained Linear Matrix Inequalities

In the paper, we consider the chance constrained version $$ \Prob\{A_0[x]+\sum_{i=1}^d\zeta_i A_i[x]\succeq0\}\geq1-\epsilon, $$ of an affinely perturbed Linear Matrix Inequality constraint; here $A_i[x]$ are symmetric matrices affinely depending on the decision vector $x$, and $\zeta_1,…,\zeta_d$ are independent of each other random perturbations with light tail distributions (e.g., bounded or Gaussian). Constraints of this type, playing … Read more

A Penalized Trimmed Squares Method for Deleting Outliers in Robust Regression

We consider the problem of identifying multiple outliers in linear regression models. In robust regression the unusual observations should be removed from the sample in order to obtain better fitting for the rest of the observations. Based on the LTS estimate, we propose a penalized trimmed square estimator PTS, where penalty costs for discarding outliers … Read more

A Heuristic Approach for Big Bucket Production Planning Problems

Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates … Read more

Asymptotics of minimax stochastic programs

We discuss in this paper asymptotics of the sample average approximation (SAA) of the optimal value of a minimax stochastic programming problem. The main tool of our analysis is a specific version of the infinite dimensional Delta Method. As an example, we discuss asymptotics of SAA of risk averse stochastic programs involving the absolute semideviation … Read more

Polyhedral combinatorics of a resource-constrained ordering problem part II: on the process move program polytope

This paper is the second of a series of two devoted to the polyhedral study of a strongly NP-hard resource-constrained scheduling problem, referred to as the process move programming problem. In the present paper, we put back into the picture the capacity constraints which were ignored in the first paper. In doing so, we introduce … Read more