Convex sets with semidefinite representation

We provide a sufficient condition on a class of compact basic semialgebraic sets K for their convex hull to have a lifted semidefinite representation (SDr). This lifted SDr is explicitly expressed in terms of the polynomials that define K. Examples are provided. For convex and compact basic semi-algebraic sets K defined by concave polynomials, we … Read more

A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

VSDP: Verified SemiDefinite Programming

VSDP is a MATLAB software package for rigorously solving semidefinite programming problems. It expresses these problems in a notation closely related to the form given in textbooks and scientific papers. Functions for computing verified forward error bounds of the true optimal value and verified certificates of feasibility and infeasibility are provided. All rounding errors due … Read more

Recursive Construction of Optimal Self-Concordant Barriers for Homogeneous Cones

In this paper, we give a recursive formula for optimal dual barrier functions on homogeneous cones. This is done in a way similar to the primal construction of Guler and Tuncel by means of the dual Siegel cone construction of Rothaus. We use invariance of the primal barrier function with respect to a transitive subgroup … Read more

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

We study Semidefinite Programming, \SDPc relaxations for Sensor Network Localization, \SNLc with anchors and with noisy distance information. The main point of the paper is to view \SNL as a (nearest) Euclidean Distance Matrix, \EDM, completion problem and to show the advantages for using this latter, well studied model. We first show that the current … Read more

Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces

In this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite programming and exploiting the algebra structure of the optimization problem … Read more

Global minimization using an Augmented Lagrangian method with variable lower-level constraints

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration the method requires the $\varepsilon$-global minimization of the Augmented Lagrangian with simple constraints. Global convergence to an $\varepsilon$-global minimizer of the original problem is proved. The subproblems are solved using the $\alpha$BB … Read more

Primal-dual first-order methods with ${\cal O}(1/\epsilon)$ iteration-complexity for cone programming

In this paper we consider the general cone programming problem, and propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it. We then discuss first-order methods suitable for solving these reformulations, namely, Nesterov’s optimal method \cite{Nest83-1,Nest05-1}, Nesterov’s smooth approximation scheme \cite{Nest05-1}, and Nemirovski’s prox-method \cite{Nem05-1}, and propose a variant of Nesterov’s optimal method which has … Read more

A PARALLEL interior point decomposition algorithm for block-angular semidefinite programs

We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase 1, we suitably modify the {\em matrix completion} scheme of Fukuda et al. \cite{fukuda_et_al} to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase … Read more

Approximation algorithms for metric tree cover and generalized tour and tree covers

Given a weighted undirected graph $G=(V,E)$, a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of $G$. Arkin, Halld\’orsson … Read more