Flows and Decompositions of Games: Harmonic and Potential Games

In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this … Read more

Models and Formulations for Multivariate Dominance Constrained Stochastic Programs

Dentcheva and Ruszczynski recently proposed using a stochastic dominance constraint to specify risk preferences in a stochastic program. Such a constraint requires the random outcome resulting from one’s decision to stochastically dominate a given random comparator. These ideas have been extended to problems with multiple random outcomes, using the notion of positive linear stochastic dominance. … Read more

Combinatorial Integral Approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel … Read more

Generic nondegeneracy in convex optimization

We show that minimizers of convex functions subject to almost all linear perturbations are nondegenerate. An analogous result holds more generally, for lower-C^2 functions. CitationCornell University, School of Operations Research and Information Engineering, 206 Rhodes Hall Cornell University Ithaca, NY 14853. May 2010. ArticleDownload View PDF

Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

A preconditioning technique for Schur complement systems arising in stochastic optimization

Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based, treelike parallelization with interior-point methods and a Schur complement mechanism. However, the direct linear solves involving the Schur complement matrix are expensive, and adversely a ect the scalability of this approach. In this paper we propose a stochastic preconditioner to address … Read more

The Chvatal-Gomory Closure of a Strictly Convex Body

In this paper, we prove that the Chvatal-Gomory closure of a set obtained as an intersection of a strictly convex body and a rational polyhedron is a polyhedron. Thus, we generalize a result of Schrijver which shows that the Chvatal-Gomory closure of a rational polyhedron is a polyhedron. ArticleDownload View PDF