Robust Unit Commitment Problem with Demand Response and Wind Energy

To improve the efficiency in power generation and to reduce the greenhouse gas emission, both Demand Response (DR) strategy and intermittent renewable energy have been proposed or applied in electric power systems. However, the uncertainty and the generation pattern in wind farms and the complexity of demand side management pose huge challenges in power system … Read more

Min-Max Theorems Related to Geometric Representations of Graphs and their SDPs

Lovasz proved a nonlinear identity relating the theta number of a graph to its smallest radius hypersphere embedding where each edge has unit length. We use this identity and its generalizations to establish min-max theorems and to translate results related to one of the graph invariants above to the other. Classical concepts in tensegrity theory … Read more

Max-min optimizations on the rank and inertia of a linear Hermitian matrix expression subject to range, rank and definiteness restrictions

The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we give various closed-form formulas for the maximal and minimal values for the rank and inertia of the Hermitian expression $A + … Read more

Exploiting Second-Order Cone Structure for Global Optimization

Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite number of second-order cones, and we provide necessary … Read more

On the Volumetric Path

We consider the logarithmic and the volumetric barrier functions used in interior point methods. In the case of the logarithmic barrier function, the analytic center of a level set is the point at which the central path intersects that level set. We prove that this also holds for the volumetric path. For the central path, … Read more

Accuracy guarantees for ℓ1-recovery

We discuss two new methods of recovery of sparse signals from noisy observation based on ℓ1- minimization. They are closely related to the well-known techniques such as Lasso and Dantzig Selector. However, these estimators come with efficiently verifiable guaranties of performance. By optimizing these bounds with respect to the method parameters we are able to … Read more

On the parallel solution of dense saddle-point linear systems arising in stochastic programming

We present a novel approach for solving dense saddle-point linear systems in a distributed-memory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular those arising in convex programming. Although stochastic optimization problems have … Read more

On optimizing over lift-and-project closures

The lift-and-project closure is the relaxation obtained by computing all lift-and-project cuts from the initial formulation of a mixed integer linear program or equivalently by computing all mixed integer Gomory cuts read from all tableau’s corresponding to feasible and infeasible bases. In this paper, we present an algorithm for approximating the value of the lift-and-project … Read more

Construction of Risk-Averse Enhanced Index Funds

We propose a partial replication strategy to construct risk-averse enhanced index funds. Our model takes into account the parameter estimation risk by defining the asset returns and the return covariance terms as random variables. The variance of the index fund return is forced to be below a low-risk threshold with a large probability, thereby limiting … Read more


We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated to a multiobjective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting, i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst different applications, our problem may … Read more