Informatively optimal levels of confidence for mesurement uncertainty

The conception of dimensional perfection and based on principles of qualimetry and information theory the criterion of informational optimality have been used for analyzing modeling functions of measurement. By means of variances of uncertainty contributions, transformed into their relative weights, the possibility of determining informatively rational and optimal levels of confidence for expanded uncertainty has … Read more

A C++ application programming interface for biased random-key genetic algorithms

In this paper, we describe brkgaAPI, an efficient and easy-to-use object oriented application programming interface for the algorithmic framework of biased random-key genetic algorithms. Our cross-platform library automatically handles the large portion of problem-independent modules that are part of the framework, including population management and evolutionary dynamics, leaving to the user the task of implementing … Read more

Robust Rankings for College Football

We investigate the sensitivity of the Colley Matrix (CM) rankings—one of six computer rankings used by the Bowl Championship Series—to (hypothetical) changes in the outcomes of (actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the win-loss outcome of, say, a single game between two teams, each with … Read more

Correlative Sparsity Structures and Semidefinite Relaxations for Concave Cost Transportation Problems with Change of Variables

We present a hierarchy of semidefinite programming (SDP) relaxations for solving the concave cost transportation problem (CCTP), which is known to be NP-hard, with $p$ suppliers and $q$ demanders. In particular, we study cases in which the cost function is quadratic or square-root concave. The key idea of our relaxation methods is in the change … Read more

Approximate spectral factorization for design of efficient sub-filter sequences

A well-known approach to the design of computationally efficient filters is to use spectral factorization, i.e. a decomposition of a filter into a sequence of sub-filters. Due to the sparsity of the sub-filters, the typical processing speedup factor is within the range 1-10 in 2D, and for 3D it achieves 10-100. The design of such … Read more

Daily Scheduling of Nurses in Operating Suites

This paper provides a new multi-objective integer programming model for the daily scheduling of nurses in operating suites. The model is designed to assign nurses to di erent surgery cases based on their specialties and competency levels, subject to a series of hard and soft constraints related to nurse satisfaction, idle time, overtime, and job changes … Read more

An Adaptive Gradient Sampling Algorithm for Nonsmooth Optimization

We present an algorithm for the minimization of f : Rn → R, assumed to be locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective f may be non-smooth and/or non-convex. The method is based on the gradient sampling (GS) algorithm of Burke et al. [A robust gradient sampling … Read more

Optimization over the Efficient Set of a Bicriteria Convex Programming Problem

The problem of optimizing a real function over the efficient set of a multiple objective programming problem arises in a variety of applications. In this article, we propose an outer approximation algorithm for maximizing a function $h(x) = \varphi(f(x))$ over the efficient set $X_E$ of the bi-criteria convex programming problem $ {\rm Vmin} \{f(x)=(f_1(x), f_2(x))^T … Read more

Derivative-free methods for constrained mixed-integer optimization

We consider the problem of minimizing a continuously di erentiable function of several variables subject to simple bound and general nonlinear inequality constraints, where some of the variables are restricted to take integer values. We assume that the rst order derivatives of the objective and constraint functions can be neither calculated nor approximated explicitly. This class … Read more