On feasibility based bounds tightening

Mathematical programming problems involving nonconvexities are usually solved to optimality using a (spatial) Branch-and-Bound algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each Branch-and-Bound node naturally plays a critical role. The practically fastest box-tightening algorithm is known as FBBT (Feasibility-Based Bounds Tightening): an … Read more

Boosting the Feasibility Pump

The Feasibility Pump (FP) has proved to be an effective method for finding feasible solutions to mixed integer programming problems. FP iterates between a rounding procedure and a projection procedure, which together provide a sequence of points alternating between LP feasible but fractional solutions, and integer but LP relaxed infeasible solutions. The process attempts to … Read more

Augmented L1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm

This paper studies the long-existing idea of adding a nice smooth function to “smooth” a non-differentiable objective function in the context of sparse optimization, in particular, the minimization of $||x||_1+1/(2\alpha)||x||_2^2$, where $x$ is a vector, as well as those of the minimization of $||X||_*+1/(2\alpha)||X||_F^2$, where $X$ is a matrix and $||X||_*$ and $||X||_F$ are the … Read more

Stochastic first order methods in smooth convex optimization.

In this paper, we are interested in the development of efficient first-order methods for convex optimization problems in the simultaneous presence of smoothness of the objective function and stochasticity in the first-order information. First, we consider the Stochastic Primal Gradient method, which is nothing else but the Mirror Descent SA method applied to a smooth … Read more

Optimal Response to Epidemics and Cyber Attacks in Networks

This paper introduces novel formulations for optimally responding to epidemics and cyber attacks in networks. In our models, at a given time period, network nodes (e.g., users or computing resources) are associated with probabilities of being infected, and each network edge is associated with some probability of propagating the infection. A decision maker would like … Read more

On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers

Recently, a worst-case O(1/t) convergence rate was established for the Douglas-Rachford alternating direction method of multipliers in an ergodic sense. This note proposes a novel approach to derive the same convergence rate while in a non-ergodic sense. ArticleDownload View PDF

Pricing to accelerate demand learning in dynamic assortment planning for perishable products

Retailers, from fashion stores to grocery stores, have to decide what range of products to off er, i.e., their product assortment. New business trends, such as mass customization and shorter product life cycles, make predicting demand more difficult, which in turn complicates assortment planning. We propose and study a stochastic dynamic programming model for simultaneously making … Read more

Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial … Read more

Insertion based Lin-Kernighan heuristic for single row facility layout

The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is known to be NP-hard. In this paper, we present a neighborhood search heuristic called LK-INSERT which uses a Lin-Kernighan neighborhood … Read more

Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods

The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is NP-hard. In this paper, we present two tabu search implementations, one involving an exhaustive search of the 2-opt neighborhood and … Read more