On the extension of the Hager-Zhang conjugate gradient method for vector optimization

The extension of the Hager-Zhang (HZ) nonlinear conjugate gradient method for vector optimization is discussed in the present research. In the scalar minimization case, this method generates descent directions whenever, for example, the line search satisfies the standard Wolfe conditions. We first show that, in general, the direct extension of the HZ method for vector … Read more

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. VII. Inverse semigroup theory, closures, decomposition of perturbations

In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row Gomory-Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and infinite-dimensional subspaces. The … Read more

A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis

The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, options pricing in finance, constructing quadrature schemes for numerical integration, and distributionally robust optimization. A usual solution approach, … Read more

Submodularity and valid inequalities in nonlinear optimization with indicator variables

We propose a new class of valid inequalities for mixed-integer nonlinear optimization problems with indicator variables. The inequalities are obtained by lifting polymatroid inequalities in the space of the 0–1 variables into conic inequalities in the original space of variables. The proposed inequalities are shown to describe the convex hull of the set under study … Read more

A Tutorial on Formulating QUBO Models

The field of Combinatorial Optimization (CO) is one of the most important areas in the general field of optimization, with important applications found in every industry, including both the private and public sectors. It is also one of the most active research areas pursued by the research communities of Operations Research, Computer Science, and Analytics … Read more

A globally and linearly convergent PGM for zero-norm regularized quadratic optimization with sphere constraint

This paper is concerned with the zero-norm regularized quadratic optimization with a sphere constraint, which has an important application in sparse eigenvalue problems. For this class of nonconvex and nonsmooth optimization problems, we establish the KL property of exponent 1/2 for its extended-valued objective function and develop a globally and linearly convergent proximal gradient method … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

A class of derivative-free CG projection methods for nonsmooth equations with an application to the LASSO problem

In this paper, based on a modified Gram-Schmidt (MGS) process, we propose a class of derivative-free conjugate gradient (CG) projection methods for nonsmooth equations with convex constraints. Two attractive features of the new class of methods are: (i) its generated direction contains a free vector, which can be set as any vector such that the … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

Gradient methods exploiting spectral properties

We propose a new stepsize for the gradient method. It is shown that this new stepsize will converge to the reciprocal of the largest eigenvalue of the Hessian, when Dai-Yang’s asymptotic optimal gradient method (Computational Optimization and Applications, 2006, 33(1): 73-88) is applied for minimizing quadratic objective functions. Based on this spectral property, we develop … Read more