A globally and linearly convergent PGM for zero-norm regularized quadratic optimization with sphere constraint

This paper is concerned with the zero-norm regularized quadratic optimization with a sphere constraint, which has an important application in sparse eigenvalue problems. For this class of nonconvex and nonsmooth optimization problems, we establish the KL property of exponent 1/2 for its extended-valued objective function and develop a globally and linearly convergent proximal gradient method … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

A class of derivative-free CG projection methods for nonsmooth equations with an application to the LASSO problem

In this paper, based on a modified Gram-Schmidt (MGS) process, we propose a class of derivative-free conjugate gradient (CG) projection methods for nonsmooth equations with convex constraints. Two attractive features of the new class of methods are: (i) its generated direction contains a free vector, which can be set as any vector such that the … Read more

Gradient methods exploiting spectral properties

We propose a new stepsize for the gradient method. It is shown that this new stepsize will converge to the reciprocal of the largest eigenvalue of the Hessian, when Dai-Yang’s asymptotic optimal gradient method (Computational Optimization and Applications, 2006, 33(1): 73-88) is applied for minimizing quadratic objective functions. Based on this spectral property, we develop … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

A Unified Framework for Sparse Relaxed Regularized Regression: SR3

Regularized regression problems are ubiquitous in statistical modeling, signal processing, and machine learning. Sparse regression in particular has been instrumental in scientific model discovery, including compressed sensing applications, vari- able selection, and high-dimensional analysis. We propose a broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation of … Read more

Geometric insights and proofs on optimal inventory control policies

We develop a unifying framework to prove the existence of optimal policies for a large class of inventory systems. The framework is based on the transformation of the inventory control problem into a game, each round of which corresponds to a single replenishment cycle. By using parametrized optimization methods we show that finding the equilibrium … Read more

A Distributionally Robust Analysis of the Program Evaluation and Review Technique

Traditionally, stochastic project planning problems are modeled using the Program Evaluation and Review Technique (PERT). PERT is an attractive technique that is commonly used in practice as it requires specification of only a few characteristics of the activities’ duration. Moreover, its computational burden is extremely low. Over the years, four main disadvantages of PERT have … Read more

The policy graph decomposition of multistage stochastic optimization problems

We propose the policy graph as a way of formulating multistage stochastic optimization problems. We also propose an extension to the stochastic dual dynamic programming algorithm to solve a class of problems formulated as a policy graph. This class includes discrete-time, infinite horizon, multistage stochastic optimization problems with continuous state and control variables. ArticleDownload View … Read more

Deterministic upper bounds in global minimization with nonlinear equality constraints

We address the problem of deterministically determining upper bounds in continuous non-convex global minimization of box-constrained problems with equality constraints. These upper bounds are important for the termination of spatial branch-and-bound algorithms. Our method is based on the theorem of Miranda which helps to ensure the existence of feasible points in certain boxes. Then, the … Read more