Indefinite linearized augmented Lagrangian method for convex programming with linear inequality constraints

The augmented Lagrangian method (ALM) is a benchmark for tackling the convex optimization problem with linear constraints; ALM and its variants for linearly equality-constrained convex minimization models have been well studied in the literatures. However, much less attention has been paid to ALM for efficiently solving the linearly inequality-constrained convex minimization model. In this paper, … Read more

Projections onto the canonical simplex with additional linear inequalities

We consider the distributionally robust optimization and show that computing the distributional worst-case is equivalent to computing the projection onto the canonical simplex with additional linear inequality. We consider several distance functions to measure the distance of distributions. We write the projections as optimization problems and show that they are equivalent to finding a zero … Read more

Consensus-Based Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DWD) is a classical algorithm for solving large-scale linear programs whose constraint matrix involves a set of independent blocks coupled with a set of linking rows. The algorithm decomposes such a model into a master problem and a set of independent subproblems that can be solved in a distributed manner. In a typical … Read more

A Python package for multi-stage stochastic programming

This paper presents a Python package to solve multi-stage stochastic linear programs (MSLP) and multi-stage stochastic integer programs (MSIP). Algorithms based on an extensive formulation and Stochastic Dual Dynamic (Integer) Programming (SDDP/SDDiP) method are implemented. The package is synthetically friendly and has a number of features which are not available in the competing software packages. … Read more

The Nutritious Supply Chain: Optimizing Humanitarian Food Aid

The World Food Programme (WFP) is the largest humanitarian agency fighting hunger worldwide, reaching around 90 million people with food assistance in 80 countries each year. To deal with the operational complexities inherent in its mandate, WFP has been developing tools to assist its decision makers with integrating supply chain decisions across departments and functional … Read more

A Scenario-Based Approach for the Vehicle Routing Problem with Roaming Delivery Locations under Stochastic Travel Times

We address a stochastic variant of the Vehicle Routing Problem with Roaming Delivery Locations. In this model, direct-to-consumer deliveries can be made in the trunk of the customer’s car, while the vehicle is parked at a location along the customer’s itinerary. The stochasticity arises from the uncertainty in travel times and the problem is formulated … Read more

New characterizations of Hoffman constants for systems of linear constraints

We give a characterization of the Hoffman constant of a system of linear constraints in $\R^n$ relative to a reference polyhedron $R\subseteq\R^n$. The reference polyhedron $R$ represents constraints that are easy to satisfy such as box constraints. In the special case $R = \R^n$, we obtain a novel characterization of the classical Hoffman constant. More … Read more

An Inexact Primal-Dual Smoothing Framework for Large-Scale Non-Bilinear Saddle Point Problems

We develop an inexact primal-dual first-order smoothing framework to solve a class of non-bilinear saddle point problems with primal strong convexity. Compared with existing methods, our framework yields a significant improvement over the primal oracle complexity, while it has competitive dual oracle complexity. In addition, we consider the situation where the primal-dual coupling term has … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more

Detection and Transformation of Second-Order Cone Programming Problems in a General-Purpose Algebraic Modeling Language

Diverse forms of nonlinear optimization problems can be recast to the special form of second-order cone problems (SOCPs), permitting a wider variety of highly effective solvers to be applied. Popular solvers assume, however, that the necessary transformations to required canonical forms have already been identified and carried out. We describe a general approach to the … Read more