Multi-criteria Course Mode Selection and Classroom Assignment Under Sudden Space Scarcity

Problem Definition: While physical (or ‘social’) distancing is an important public health intervention during airborne pandemics, physical distancing dramatically reduces the effective capacity of classrooms. During the COVID-19 pandemic, this presented a unique problem to campus planners who hoped to deliver a meaningful amount of in-person instruction in a way that respected physical distancing. This … Read more

A Reformulation Technique to Solve Polynomial Optimization Problems with Separable Objective Functions of Bounded Integer Variables

Real-world problems are often nonconvex and involve integer variables, representing vexing challenges to be tackled using state-of-the-art solvers. We introduce a mathematical identity-based reformulation of a class of polynomial integer nonlinear optimization (PINLO) problems using a technique that linearizes polynomial functions of separable and bounded integer variables of any degree. We also introduce an alternative … Read more

Confidence Region for Distributed Stochastic Optimization Problem via Stochastic Gradient Tracking Method

Since stochastic approximation (SA) based algorithms are easy to implement and need less memory, they are very popular in distributed stochastic optimization problems. Many works have focused on the consistency of the objective values and the iterates returned by the SA based algorithms. It is of fundamental interest to know how to quantify the uncertainty … Read more

Minimization over the l1-ball using an active-set non-monotone projected gradient

The l1-ball is a nicely structured feasible set that is widely used in many fields (e.g., machine learning, statistics and signal analysis) to enforce some sparsity in the model solutions. In this paper, we devise an active-set strategy for efficiently dealing with minimization problems over the l1-ball and embed it into a tailored algorithmic scheme … Read more

Global Optimization for Nonconvex Programs via Convex Proximal Point Method

The nonconvex program plays an important role in the field of optimization and has a lot of applications in practice. However, for general nonconvex programming problems, the lack of verifiable global optimal conditions and the multiple local minimizers make global optimization hard in computation. In this paper, a convex proximal point algorithm (CPPA) is considered … Read more

Optimal deployment of indoor wireless local area networks

We present a two-phase methodology to address the problem of optimally deploying indoor wireless local area networks. In the first phase, we use Helmholtz’s equation to simulate electromagnetic fields in a typical environment such as an office floor. The linear system which results from the discretization of this partial differential equation is solved with a … Read more

A novel decomposition approach for holistic airline optimization

Airlines face many different planning processes until the day of operation. These include Fleet Assignment, Tail Assignment and the associated control of ground processes between consecutive flights, called Turnaround Handling. All of these planning problems have in common that they often need to be reoptimized on the day of execution due to unplanned events. In … Read more

Locating Platforms and Scheduling a Fleet of Drones for Emergency Delivery of Perishable Items

Motivated by issues dealing with delivery of emergency medical products during humanitarian disasters, this paper addresses the general problem of delivering perishable items to remote demands accessible only by helicopters or drones. Each drone operates out of platforms that may be moved when not in use and each drone has a limited delivery range to … Read more

On the exactness of the eps-constraint method for bi-objective integer nonlinear programming

The eps-constraint method is a well-known scalarization technique used for multiobjective optimization. We explore how to properly define the step size parameter of the method in order to guarantee its exactness when dealing with problems having two nonlinear objective functions and integrality constraints on the variables. Under specific assumptions, we prove that the number of … Read more

Full-low evaluation methods for derivative-free optimization

We propose a new class of rigorous methods for derivative-free optimization with the aim of delivering efficient and robust numerical performance for functions of all types, from smooth to non-smooth, and under different noise regimes. To this end, we have developed Full-Low Evaluation methods, organized around two main types of iterations. The first iteration type … Read more