The structure of conservative gradient fields

The classical Clarke subdifferential alone is inadequate for understanding automatic differentiation in nonsmooth contexts. Instead, we can sometimes rely on enlarged generalized gradients called “conservative fields”, defined through the natural path-wise chain rule: one application is the convergence analysis of gradient-based deep learning algorithms. In the semi-algebraic case, we show that all conservative fields are … Read more

An (s^r)hBcResolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems

There has been a long history of using ordinary differential equations (ODEs) to understand the dynamic of discrete-time algorithms (DTAs). Surprisingly, there are still two fundamental and unanswered questions: (i) it is unclear how to obtain a \emph{suitable} ODE from a given DTA, and (ii) it is unclear the connection between the convergence of a … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

Efficient presolving methods for the influence maximization problem in social networks

We consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a social network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the … Read more

Optimization with learning-informed differential equation constraints and its applications

Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis … Read more