The Lax conjecture is true

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov. Citation Department of Mathematics, Simon Fraser University, Canada Article Download View The Lax conjecture is true

Robust regularization

Given a real function on a Euclidean space, we consider its “robust regularization”: the value of this new function at any given point is the maximum value of the original function in a fixed neighbourhood of the point in question. This construction allows us to impose constraints in an optimization problem *robustly*, safeguarding a constraint … Read more

Optimal Stability and Eigenvalue Multiplicity

We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the … Read more

Optimizing Matrix Stability

Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to … Read more

Approximating Subdifferentials by Random Sampling of Gradients

Many interesting real functions on Euclidean space are differentiable almost everywhere. All Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what extent we can approximate the Clarke subdifferential of such a function … Read more

Two Numerical Methods for Optimizing Matrix Stability

Consider the affine matrix family $A(x) = A_0 + \sum_{k=1}^m x_k A_k$, mapping a design vector $x\in\Rl^m$ into the space of $n \times n$ real matrices. Consider the affine matrix family $A(x) = A_0 + \sum_{k=1}^m x_k A_k$, mapping a design vector $x\in\Rl^m$ into the space of $n \times n$ real matrices. We are interested … Read more