Integer linear programming formulations for the minimum connectivity inference problem and model reduction principles

The minimum connectivity inference (MCI) problem represents an NP-hard generalization of the well-known minimum spanning tree problem. Given a set of vertices and a finite collection of subsets (of this vertex set), the MCI problem requires to find an edge set of minimal cardinality so that the vertices of each subset are connected. Although the … Read more

A Special Complementarity Function Revisited

Recently, a local framework of Newton-type methods for constrained systems of equations has been developed which, applied to the solution of Karush-KuhnTucker (KKT) systems, enables local quadratic convergence under conditions that allow nonisolated and degenerate KKT points. This result is based on a reformulation of the KKT conditions as a constrained piecewise smooth system of … Read more

An Improved Flow-based Formulation and Reduction Principles for the Minimum Connectivity Inference Problem

The Minimum Connectivity Inference (MCI) problem represents an NP-hard generalisation of the well-known minimum spanning tree problem and has been studied in different fields of research independently. Let an undirected complete graph and finitely many subsets (clusters) of its vertex set be given. Then, the MCI problem is to find a minimal subset of edges … Read more

Local attractors of newton-type methods for constrained equations and complementarity problems with nonisolated solutions

For constrained equations with nonisolated solutions, we show that if the equation mapping is 2-regular at a given solution with respect to a direction in the null space of the Jacobian, and this direction is interior feasible, then there is an associated domain of starting points from which a family of Newton-type methods is well-de ned … Read more

Convergence Conditions for Newton-type Methods Applied to Complementarity Systems with Nonisolated Solutions

We consider a class of Newton-type methods for constrained systems of equations that involve complementarity conditions. In particular, at issue are the constrained Levenberg–Marquardt method and the recently introduced Linear Programming-Newton method, designed for the difficult case when solutions need not be isolated, and the equation mapping need not be differentiable at the solutions. We … Read more

A New Error Bound Result for Generalized Nash Equilibrium Problems and its Algorithmic Application

We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on an error bound and provide a new sufficient condition for it to hold that … Read more

A Family of Newton Methods for Nonsmooth Constrained Systems with Nonisolated Solutions

We propose a new family of Newton-type methods for the solution of constrained systems of equations. Under suitable conditions, that do not include differentiability or local uniqueness of solutions, local, quadratic convergence to a solution of the system of equations can be established. We show that as particular instances of the method we obtain inexact … Read more

An LP-Newton Method: Nonsmooth Equations, KKT Systems, and Nonisolated Solutions

We define a new Newton-type method for the solution of constrained systems of equations and analyze in detail its properties. Under suitable conditions, that do not include differentiability or local uniqueness of solutions, the method converges locally quadratically to a solution of the system of equations, thus filling an important gap in the existing theory. … Read more