An optimally fast objective-function-free minimization algorithm using random subspaces

Article Download View An optimally fast objective-function-free minimization algorithm using random subspaces

Inexact Newton methods with matrix approximation by sampling for nonlinear least-squares and systems

We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and inexact Newton methods for nonlinear systems of equations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level … Read more

Trust-region algorithms: probabilistic complexity and intrinsic noise with applications to subsampling techniques

A trust-region algorithm is presented for finding approximate minimizers of smooth unconstrained functions whose values and derivatives are subject to random noise. It is shown that, under suitable probabilistic assumptions, the new method finds (in expectation) an epsilon-approximate minimizer of arbitrary order q > 0 in at most O(epsilon^{-(q+1)}) inexact evaluations of the function and … Read more

A stochastic first-order trust-region method with inexact restoration for finite-sum minimization

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. At each iteration, the function and the gradient are approximated by sampling. The sample size in gradient approximations is smaller than the sample size in function approximations and the latter is determined using a deterministic rule inspired … Read more

The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case

Intrinsic noise in objective function and derivatives evaluations may cause premature termination of optimization algorithms. Evaluation complexity bounds taking this situation into account are presented in the framework of a deterministic trust-region method. The results show that the presence of intrinsic noise may dominate these bounds, in contrast with what is known for methods in … Read more

Solving nonlinear systems of equations via spectral residual methods: stepsize selection and applications

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a … Read more

High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives

A stochastic adaptive regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing strong approximate minimizers of any order for inexpensively constrained smooth optimization problems. For an objective function with Lipschitz continuous p-th derivative in a convex neighbourhood of the feasible set and given an arbitrary optimality order q, it … Read more

Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization

Abstract. We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is … Read more

Inexact restoration with subsampled trust-region methods for finite-sum minimization

Convex and nonconvex finite-sum minimization arises in many scientific computing and machine learning applications. Recently, first-order and second-order methods where objective functions, gradients and Hessians are approximated by randomly sampling components of the sum have received great attention. We propose a new trust-region method which employs suitable approximations of the objective function, gradient and Hessian … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more